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A Lets start by reviewing some vector calculus
A Recall the divergence theorem
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a closed simply connected surfaeounding

a region (interior volume) V to the volume
Integral of thedivergenceof the functionF

A Divergence F =B F

[[[ - ®)av = ¢fF nas.

Volume integral of divergence &f = Surface (flux) integralfof



Mathematics vs Physics

A There is NO Physics in the previous
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A It is purely mathematical and applies to ANY
well behaved vector fielé(x,y,z)




Some History Important to know
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Electrostatlcs and in Gravity (both are inverse square
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A It is also related to conservation of mass flow in
fluids, hydrodynamics and aerodynamics

A Can be written in integral or differential forms


http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/George_Green
http://en.wikipedia.org/wiki/Mikhail_Vasilievich_Ostrogradsky

Integral vs Differential Forms

A Integral Form ///(?_F) P #F.“dg_

A Differential Formye have to add some Physics)

A Example If we want mass to be conserved in
fluid flow ¢ iIe mass Is neither created nor
destroyed but can be removed or added or
compressed or decompressed then we get

A Conservation Laws



Continuity Equations; Conservation Laws

d,ﬂ v. 0 Conservation of mass in compressible fluid flow
df + [: ) r = fluid densityu = velocity vector
Conservation of an incompressible fluid
1"1._.*“' -u=0 r = fluid density = constant here
d Conservation of charge in electric current flow
V-] 4 = & —0 J= current flux vector (amps/f,r = charge
df -‘ density (coulombs/ 1¥)
3 Conservation of probability on Quantum
V-] _d_P(I f) Mechanicsj = probability flux vector,
{ r = probability
= 5 General Continuity Equation with source term s =
df source or sink creation or annihilation
d'f* —0 General Continuity Equation with s =0

ot



What are Continuity, Conservation Laws?

The equation

///(?-F}dv:#F-ndS.

What it means

A LetF=r Vfor a fluid then

A F=flux (mass flow) of fluid per unit are
per unit of time (Kg/sn?)

A If you integrate this over a closed
surface (right hand side) you get the n

mass change per unit time going INTC
OUT OF the surface

A This must beum/pt where m = mass
Inside the surface. Note minus sign
this depends on how we define the
outward normal

BUT m #ir dVandum/dt =nu fut dV

Now equate the two sides of the equation
We now get® ¥=-u rfut or

A DB F+u fut = 0 => Continuity equation

To I I
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A We start with an assumption about tHgfield
from a point source.
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square law

g €y Where e, is a radial unit

E[:I') — AT 7 vector away from the point
meg T charge g

Compute the surface integral of E(r) over a sphere of radius r with
the charge g atthecenter We wi I | t hen use C



Surface integral over sphere

A Compute the surface integral &{(r)over a
sphere of radius r with the charge g at the
center.

ATE(r)TdA = 9r2 * kqg/r2 = 4okq = gk,
A (NOTEnor dependence) k=14 g

AD E(r 0) = O¢ this is true of ANY inverse
square field (Gravity also)

A D ¥E(r=0) =(r) function(z at r=0, 0 otherwise)



What if we are not at the center of the sphere?

We break the sphere into two imaginary regions i one sphere inside the
other but not centered.

Imagine there is only one charge in the smaller sphere and none between

The total flux when summing over both spheres is ZERO
Since D E(r, 0) = 0 in between both spheres (no charges)

A EETdV = 0 = AEY dA (over both spheres)
But = AEY dA (total) = 0 = AEY dA (outer sphere) + = AET dA (inner sphere)

Thus:
rEY dA (outer sphere) = -NEY dA (inner sphere)

But we know AEY dA (inner) = Q/g,

Hence fEY dA (outer sphere) = Q/g, (not minus due to the way we oriented
the normal to the surface)

There was nothing special about the outer sphere, It could have been any
shape, Hence fEY dA = Q/e, where Q is the total charge enclosed.

More generally B £ =r/g,

Maxwell Eq #1 of 4 r = charge density



Electric Flux

dPr = E - dA Differential flux

b = / E-A4dA Integral flux
5

QS Flux is charge
b = j{ E-A4dA = enclosed Q. /g,
e
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A Assume we have a point charge at o
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A And spherical symmetry

§E-dA - Q/z,
)

E(r)_ - Hence we get Coul omb¢



Electrostaticg Here it Is dipole moments




Human Lightning

Lightning
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A typical human has a capacitance of about 200-300 pf
Discharge can 10-20 KV+ and amps but microsecond long
Total energy is small so generally not harmful



Typical van de Graff generator is Positively charged bt
NOT alwaysg depends on belt material

Conducting
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Flux =0 through sphere




Charged metal sphereE=0 inside

| |
1 g Outside the sphere, the magnitude
E(R) = —5 r—— .of the electric field decreases with
4mey R B—— I
" the square of the radial distance
from the center of the sphere:

4 T Gaussian surfaces
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Assume charge Q is spread uniformly over r<R

Spherical insulator

Gaussian
surface




Gaussian Surface

Gaussian
surface




Metal box in external E field
CI N} RIIFe& /I 3S¢
E=0 inside box
a)

Field pushes electrons  Net positive charge
toward left side. remains on right side.
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uniformly charged metal plate with charge per unit area =
Note E field is the same everywhere except inside metal (=0)
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Two metal plateg a Capacitor

(b) Idealized model 1 2

In the idealized case
we i1gnore “fringing” + > -
at the plate edges and -

treat the field between =
the plates as uniform. S3

Cylindrical Gaussian
surfaces (seen from S,
the side)
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Charged ball and metal container

(a) Insulating — (b) . Metal lid (© [\L[eml lid
thread % Charged / DA — 1A

el conducting +
ball ' \ //‘ ] * \ +
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container \ ™ / Insulating s e+
‘ stand
g Once the ball touches the container, it
Charged ball induces charges on the is part of the interior surface; all the
interior and exterior of the container. charge moves to the container’s exterior.
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Charged ball inside neutral metal container

(b) Metal lid

Charged ball induces charges on the
interior and exterior of the container.



Charge moves to outside of metal container

(© 1\//Ietal lid
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Once the ball touches the container, it
1s part of the interior surface; all the
charge moves to the container’s exterior.



Total flux = total charge enclosed/

In this case it is ZERO



