
Blackbody Colors
Due: Friday, June 15 by 5:00 in class drive

Introduction

Often times astronomers will want more information about an object than just its luminosity.
Indeed, the color of an object can be even more important. To determine colors, astronomers
often use color indices, or the differences in magnitudes as measured in different filters. Of
particular interest is the theoretical value of the effective temperature, often denoted as Teff .
This temperature is the temperature that the object would have if it were a perfect blackbody.
That is,

Teff =
(

L

4πR2σ

)1/4

(1)

Where L is the bolometric luminosity of the object, R is its radius, and σ is the Stefan-Boltzmann
constant. With stars, we can usually measure the overall luminosity L (or at least get close and
then use a bolometric correction, which assumes a known color. . . sort of a catch 22 there), but
the radius is typically not known. Additionally, stars are not perfect blackbodies, so this tem-
perature doesn’t necessarily mean that the star has that temperature, though the temperature of
the photosphere (the surface from which the photons are emanating) is likely close to the effective
temperature.

Nonetheless, we often will use effective temperatures to talk about stars. From introductory physics
(and personal experience), you probably know that the color of a blackbody is related to its tem-
perature. For instance, a yellow coal in a grill is hotter than a red coal. We can use this effect to
gain a temperature from what we measure: color indices. In this project, we will come up with a
simplified way of doing so.

Instructions

We will be assuming that all stars are perfect blackbodies, so that we know their spectral energy
distribution (SED); it will be that of a blackbody (the Planck function, essentially). Recall that
the magnitude of an object in a particular filter is given by

m = −2.5 log
[ ∫

dλS(λ)Fλ∫
dλS(λ)Fλ,0

]
= −2.5 log

∫
dλS(λ)Fλ +m0 (2)

Where here, S(λ) is the sensitivity function of the filter (varies from filter to filter), Fλ is the
SED of the object whose magnitude you are measuring, Fλ,0 is the SED of the zero-point object
(object whose magnitude is defined to be zero), and m0 is the zero-point magnitude (obviously Fλ,0
and m0 are directly related.) Note that the first expression in (2) is independent of units, whereas
the second expression assumes you have calibrated m0 correctly for the units you use in Fλ.

For a blackbody, we know Fλ, so long as we know the temperature. It is simply the Planck function:

Fλ(T ) ∝ πBλ(T ) =
2πhc2

λ5

1
ehc/(λkT )) − 1

(3)
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The factor of π is present so that the outgoing flux has already been integrated over all solid angle.
It makes little difference, though, since the ratio of fluxes is all that matters. Additionally, we have
only stated that the SED is proportional to πBλ(T ). This is because we also need to take into
account the size of and distance to the star. So in truth, we are missing a term of R2/r2, where R
is the radius of the star, and r is the distance to the star (the 4π’s cancel out, obviously). Since we
are only measuring magnitude differences in each filter, this term can be separated (by logarithm
rules), and will always cancel out, so we will be ignoring it.

In addition to the filter information, we still need to know what our calibration star is. Tradition-
ally, Vega has been considered the standard star, where m = 0 for any filter. Nowadays the system
is a bit more complex (for one reason, Vega is mildly variable), but we’ll use this as a guideline.
Vega is a type A0 star, with effective temperature of Teff,0 = 10, 800 K. Thus, we will let that define
our zero-point.

Finally, we need to specify what filters we are using. We would like to use the Johnson-Cousins
UBV RI filters. However, the sensitivity functions cannot be written in a clean, analytic form. As
an approximation, we will assume that they are box functions. That is, they have 100% transmission
within their band (centered at their peak wavelength with a width of their full width at half max-
imum), and 0% transmission outside. As a reminder, Table 1 gives the relevant data on these filters.

Filter Central Wavelength FWHM
U 360 nm 70 nm
B 440 nm 100 nm
V 550 nm 90 nm
R 650 nm 100 nm
I 800 nm 150 nm

Table 1: Rough specifications of the Johnson-Cousins photometric system.

Your assignment is to produce tables that relate effective temperatures with color indices. In 200
K increments, from 3,000 K to 12,000 K, give values for U−B, B−V , V −R, and R−I color indices.

This is not a task you can do by hand, even with our simplified sensitivity functions. The Planck
function, when not integrated over its entire domain, is not integrable by hand without significant
approximations. So, use your favorite numerical software (I’d probably use Mathematica, but
whatever you prefer is fine). The goal is then to have a consistent table from which one could look
up an effective temperature after measuring one or two color indices. Please submit both your
completed tables (in LATEX, Excel, or some other format) as well as the code that generated them.
Good luck, and don’t hesitate to ask me for help if you are stuck!
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