# Chapter 16 - Acoutics

- <u>Greek</u> ἀκουστικός (akoustikos) "of or for hearing, ready to hear"
- άκουστός (akoustos), "heard, audible"
- ἀκούω (akouo), "I hear
- Latin equivalent is "sonic" sound
- Galileo "Waves produced by vibrations of sonorous body"
- Mersenne (1588–1648) works out harmonics of strings
- Helmholtz and Lord Rayleigh apply rigorous mathematics



# What distinguishes Acoustics from Mechanical Waves in Chap 15?

- Semantics to some extent
- Usually acoustics refers to propagation in gases not liquids or solid BUT there are liquid and solid acoustics
- So the distinction is really artificial
- We will focus on propagation is gases
- The critical difference is gases ONLY support a compression (longitudinal) wave not a shear (transverse) wave
- Solids can support BOTH transverse and longitudinal waves
- Depending on the viscosity of the liquid generally we think of liquids as supporting only compression (longitudinal) waves

# Sound pressure levels

- Sound pressure is defined as the local deviation from the mean – units are Pa (N/m<sup>2</sup>)
- Effective sound pressure =<RMS (sound pressure) > = time and space average Root Mean Square

$$p = \frac{F}{A} \quad p_{\text{total}} = p_0 + p$$

# Sound Intensity

- Sound (Acoustic) Intensity
- I = Time ave Acoustic Power/Area I= $P_{ac}$ /A
- Let p<sub>inst</sub> = instantaneous pressure (note the different P's p(pressure), P(power)
- Let v=bulk gas speed (not molecular speed)
- Then  $I = \frac{1}{T} \int_0^T p_{inst}(t) v(t) dt$
- Recall Power = Force x speed
- Units of I are watts/m<sup>2</sup>

# How do Intensity and Pressure Scale with distance from a point Source?

- Energy is conserved so I x area = total power emitted P<sub>ac</sub>
- At a distance r from the acoustic point source

$$I_r = \frac{P_{ac}}{A} = \frac{P_{ac}}{4\pi r^2}$$

- What causes the bulk gas flow?
- It is the sound wave
- V (bulk flow) ~ p (pressure)
- Hence I<sub>r</sub> ~ p(pressure)<sup>2</sup>

## Scaling of Pressure and Intensity

- Hence I ~  $1/r^2$  while p ~ 1/r
- This is a critical difference
- Power/area ~ 1/r<sup>2</sup> while Pressure ~ 1/r

#### Sound Pressure Level - SPL

$$L_p = 10 \log_{10} \left( \frac{p_{\rm rms}^2}{p_{\rm ref}^2} \right) = 20 \log_{10} \left( \frac{p_{\rm rms}}{p_{\rm ref}} \right) \, \, \mathrm{dB},$$

The unit is dB (SPL) commonly reduced to just dB (decibel) This is a relative measure and we need a reference level Typically for hearing in air we use  $P_{ref} = 20 \ \mu P_a \ (RMS) = 2x10^{-5}$ This is the typ threshold of human hearing - ~ Mosquito at 3 m In water we normally use  $P_{ref} = 1 \ \mu P_a \ (RMS)$ 94 dB ~ 1  $P_a$ Note – 10 times the pressure = 20 dB increase in SPL Notice that  $L_p \sim Log \ (p^2)$ . This is because Intensity I ~  $p^2$ 

#### **Acoustic Impedance**



| Symbol             | Units                    |
|--------------------|--------------------------|
| p                  | pascals                  |
| f                  | <u>hertz</u>             |
| ξ                  | m, <u>metres</u>         |
| С                  | <u>m/s</u>               |
| V                  | <u>m/s</u>               |
| ω = 2πf            | <u>radians/s</u>         |
| ρ                  | <u>kg/m</u> <sup>3</sup> |
| $Z = c \cdot \rho$ | <u>N</u> ⋅s/m³           |
| a                  | <u>m/s</u> ²             |
| Ι                  | <u>W</u> /m²             |
| Ε                  | <u>W</u> ⋅s/ <u>m</u> ³  |
| P                  | W watts                  |
| 'ac                | vv, <u>vvaccs</u>        |
| A                  | m²                       |

RMS sound pressure frequency particle <u>displacement</u> speed of sound particle velocity angular frequency density of air characteristic acoustic impedance particle acceleration sound intensity sound energy <u>density</u> sound power or acoustic power area

Meaning

#### Sound Intensity level and Reference Level

# $L_I = 10 \log_{10} \frac{|I|}{I_o}$

We define the reference level to be about the threshold of human hearing  $I_0 = 10^{-12} \text{ W/m}^2$ For some interesting comparisons see http://www.sengpielaudio.com/calculator-levelchange.htm

| Source of sound                                                                                               | Sound pressure                                | Sound pressure level |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|
| Sound in air                                                                                                  | pascal                                        | <u>dB</u> re 20 μPa  |
| Shockwave (distorted sound waves > 1 <u>atm</u> ; waveform valleys are clipped at zero pressure)              | >101,325 Pa<br>(peak-to-peak)                 | >194 dB              |
| <u>Krakatoa</u> explosion at 100 <u>miles</u><br>(160 km) in air <sup>[<u>dubious</u> – <u>discuss</u>]</sup> | 20,000 Pa (RMS)                               | 180 dB               |
| Simple open-ended<br>thermoacoustic device [6]                                                                | 12,619 Pa                                     | 176 dB               |
| <u>.30-06 rifle</u> being fired 1 <u>m</u> to shooter's side                                                  | 7,265 Pa                                      | 171 dB (peak)        |
| M1 Garand rifle being fired at 1 m                                                                            | 5,023 Pa                                      | 168 dB               |
| <u>Jet engine</u> at 30 m                                                                                     | 632 Pa                                        | 150 dB               |
| Threshold of pain                                                                                             | 63.2 Pa                                       | 130 dB               |
| Hearing damage (possible)                                                                                     | 20 Pa                                         | approx. 120 dB       |
| <u>Jet</u> at 100 m                                                                                           | 6.32 – 200 Pa                                 | 110 – 140 dB         |
| <u>Jack hammer</u> at 1 m                                                                                     | 2 Pa                                          | approx. 100 dB       |
| Traffic on a busy roadway at 10 m                                                                             | 2×10 <sup>-1</sup> – 6.32×10 <sup>-1</sup> Pa | 80 – 90 dB           |
| <u>Hearing damage</u> (over long-term exposure, need not be continuous)                                       | 0.356 Pa                                      | 78 dB                |
| Passenger car at 10 m                                                                                         | 2×10 <sup>-2</sup> – 2×10 <sup>-1</sup> Pa    | 60 – 80 dB           |
| TV (set at home level) at 1 m                                                                                 | 2×10 <sup>-2</sup> Pa                         | approx. 60 dB        |
| Normal conversation at 1 m                                                                                    | 2×10 <sup>-3</sup> – 2×10 <sup>-2</sup> Pa    | 40 – 60 dB           |
| Very calm room                                                                                                | 2×10 <sup>-4</sup> – 6.32×10 <sup>-4</sup> Pa | 20 – 30 dB           |
| Light leaf rustling, calm breathing                                                                           | 6.32×10 <sup>−5</sup> Pa                      | 10 dB                |
| Auditory threshold at 1 kHz                                                                                   | 2×10 <sup>-5</sup> Pa (RMS)                   | 0 dB                 |

#### Acoustics In water

| Source of sound                               | Sound pressure            | Sound pressure level                    |
|-----------------------------------------------|---------------------------|-----------------------------------------|
| Sound under water                             | pascal                    | <u>dB</u> re 1 μPa                      |
| Pistol shrimp                                 | 79,432 Pa                 | 218 dB <sup>[7]</sup>                   |
| Sperm Whale                                   | 141-1,000 Pa              | 163-180 dB <sup>[8]</sup>               |
| Fin Whale                                     | 100-1,995 Pa              | 160-186 dB <mark><sup>[9]</sup></mark>  |
| Humpback Whale                                | 16-501 Pa                 | 144-174 dB <mark><sup>[10]</sup></mark> |
| Bowhead Whale                                 | 2-2,818 Pa                | 128-189 dB <sup>[11]</sup>              |
| Blue Whale                                    | 56-2,511 Pa               | 155-188 dB <sup>[12]</sup>              |
| Southern Right Whale                          | 398-2238 Pa               | 172-187 dB <sup>[13]</sup>              |
| <u>Gray Whale</u>                             | 12-1,778 Pa               | 142-185 dB <sup>[14]</sup>              |
| <u>Auditory threshold</u> of a diver at 1 kHz | 2.2 × 10 <sup>−3</sup> Pa | 67 dB <sup>[15]</sup>                   |

#### Adding sources of incoherent sound Total intensity = sum of intensities

$$L_{\Sigma} = 10 \cdot \log_{10} \left( \frac{p_1^2 + p_2^2 + \dots + p_n^2}{p_{\text{ref}}^2} \right) = 10 \cdot \log_{10} \left( \left( \frac{p_1}{p_{\text{ref}}} \right)^2 + \left( \frac{p_2}{p_{\text{ref}}} \right)^2 + \dots + \left( \frac{p_n}{p_{\text{ref}}} \right)^2 \right)$$

$$L_{\Sigma} = 10 \cdot \log_{10} \left( 10^{\frac{L_1}{10}} + 10^{\frac{L_2}{10}} + \dots + 10^{\frac{L_n}{10}} \right) dB$$
$$\left(\frac{p_i}{p_{\text{ref}}}\right)^2 = 10^{\frac{L_i}{10}}, \qquad i = 1, 2, \cdots, n$$

### Frequency Response

- Humans typically hear 12Hz -20 KHz under ideal conditions
- BUT too many ear buds (this Buds for You)
- Too many rock concerts == loss of hearing
- High freq response goes first (after age 8)
- Woman have better high freq response
- Humans can feel infrasonic 4-16 Hz

## Other animals

- Dogs can hear 40 Hz to 60 KHz
- Bats 20 Hz to 120 KHz Use Freq Modulation to get Doppler shift of target
- Mice 1 KHz to 90 KHz communicate above our hearing – we do not hear them
- Bottlenose Dolphins 0.25 to 150 KHz
- Harbour Porpoise typ emit at 2 KHz and 110 KHz
- Bats and many sea animals use echolocation for hunting (sonar)

#### **External Ear**



#### Human Ear





Frequency Range and Variation with Age and Gender Degradation is very dependent on exposure **Protect your ears – DO NOT blast IPods** 



Hearing Threshold and Hysteresis Threshold is lower going from higher to lower intensity



#### **Doppler Shift – Frequency Change with Motion**

- Named after <u>Austrian</u> physicist <u>Christian Doppler</u> 1842
- The effect is simple to understand if you think of the total number of waves emitted being constant
- Motion of you (the receiver) or the emitter (the source) causes the waves to "bunch up" or "spread out" in time
- Hence you measure a larger or smaller frequency
- This is true in acoustics and electromagnetic waves
- Examples are:
- Radar guns for speed control or baseball speed
- Ultrasound for heart monitoring or imaging
- Measurement of redshift in astronomy
- Blood flow monitoring and testing of arteries
- Sonar detecting fish, submarines, bats detecting bug motion

#### Doppler shift



## Doppler shift calculations

- In a medium such as water, air etc
- Let v= speed of sound in the medium
- V<sub>r</sub> = speed of receiver relative to medium
- V<sub>r</sub> positive if receiver is moving toward emitter, negative if moving away
- $V_s$  = speed of emitter relative to medium
- V<sub>s</sub> positive if source moving towards receiver, negative if away
- f<sub>0</sub> = frequency emitted
- f = frequency detected (received)

$$f = \left(\frac{v + v_r}{v - v_s}\right) f_0$$

Redshift in EM waves – used to measure velocities to stars, galaxies etc Measure shift in specific emission or absorption lines This is one way we search for extra-solar planets Search for the effects of dark Matter Measure the expansion of the universe



## Ultrasound imaging – typ 2-20 MHz



#### Heart ultrasound imaging Echocardiogram



### Doppler Echocardiogram



Sonoluminescence – Light emission from sound waves – bubble implosion Still largely unexplained – some claim fusion



