Chapter 24 Capacitors and Dielectrics

What is Capacitance?

- Capacitance (C) is equal to the Charge (Q) between two charges or charged "regions" divided by the Voltage (V) in those regions.
- Here we assume equal and opposite charges (Q)
- Thus C = Q/V or Q = CV or V=Q/C
- The units of Capacitance are "Farads" after Faraday denoted F or f
- One Farad is one Volt per Coulomb
- One Farad is a large capacitance in the world of electronics
- "Capacitors" are electronic elements capable of storing charge
- Capacitors are very common in electronic devices
- All cell phones, PDA's, computers, radio, TV's ... have them
- More common units for practical capacitors are micro-farad (10^{-6} f = μ f), nano-farad (10^{-9} f = nf) and pico-farads (10^{-12} f = pf)

A classic parallel plate capacitor

(a) Arrangement of the capacitor plates

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(b) Side view of the electric field \vec{E}

General Surfaces as Capacitors The Surfaces do not have to be the same

Cylindrical – "Coaxial" Capacitor

Spherical Shell Capacitor

How most practical cylindrical capacitors are constructd

Dielectrics – Insulators – Induced and Aligned Dipole Moments

(a)

(a)

In the absence of an electric field, nonpolar molecule are not electric (dipoles.

In the absence of an electric field, polar molecules orient randomly.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesle

Aligning Random Dipole Moments

(b)

When an electric field is applied, the molecules tend to align with it.

Creating Dipole Moments – Induced Dipoles

(b)

Adding Dielectric to a Capacitor INCREASES its Capacitance since it DECREASES the Voltage for a GIVEN Charge

For a given charge density σ , the induced charges on the dielectric's surfaces reduce the electric field between the plates.

Induced Dipole Moments in a Normally Unpolarized Dielectric

Electrostatic Attraction – "Cling" Forced on Induced Dipole Moments

Energy Stored in a Capacitor

- Capacitors store energy in their electric fields
- The force on a charge in E field E is F=qE
- The work done moving a charge q across a potential V is qV
- Lets treat a capacitor as a storage device we are charging
- We start from the initial state with no charge and start adding charge until we reach the final state with charge Q and Voltage V.
- Total work done $W = \int V(q) dq$ (we charge from zero to Q)
- BUT V = q/C
- We assume here the Capacitance in NOT a function of Q and V BUT only of Geometry
- Thus the energy stored is W = $1/C \int q \, dq = \frac{1}{2} Q^2/C = \frac{1}{2} CV^2$

Calculating Parallel Capacitor Capacitance

- Assume two metal plates, area A each, distance d apart, Voltage V between them, Charge +-Q on Plates
- $\sigma = Q/A$ $V = \int Edx = Ed$ $E = \sigma/\epsilon_0$ (from Gauss)
- Therefore $C = Q/V = \sigma A/(Ed) = \epsilon_0 A/d$
- Note As d decreases C increases

(b) Side view of the electric field \vec{E}

Force on a Dielectric inserted into a Capacitor

Force on Capacitor Plates F=QE V=Ed (d separation distance) F=QV/d $Q=CV \rightarrow F=CV^2/d$ Recall W (Stored Energy) = $\frac{1}{2}CV^2$ Hence F = 2W/d or W = $\frac{1}{2}Fd$

Capacitors in Series

(a) Two capacitors in series

Capacitors in series:

- The capacitors have the same charge Q.
- Their potential differences add:

 $V_{ac} + V_{cb} = V_{ab}.$

(b) The equivalent single capacitor

Capacitors in Parallel

(a) Two capacitors in parallel

Capacitors in parallel:

- The capacitors have the same potential V.
- The charge on each capacitor depends on its capacitance: $Q_1 = C_1 V$, $Q_2 = C_2 V$.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

(b) The equivalent single capacitor

Series and Parallel Capacitors

Dielectric Constants of Some Common Materials

Table 24.1Values of Dielectric Constant K at 20°C

Material	K	Material	K
Vacuum	1	Polyvinyl chloride	3.18
Air (1 atm)	1.00059	Plexiglas	3.40
Air (100 atm)	1.0548	Glass	5-10
Teflon	2.1	Neoprene	6.70
Polyethylene	2.25	Germanium	16
Benzene	2.28	Glycerin	42.5
Mica	3–6	Water	80.4
Mylar	3.1	Strontium titanate	310

Two Dielectric Constants – As if capacitors in Series

Two Dielectric Constants – As if two capacitors in Parallel

Capacitance of simple systems

Туре	Capacitance	Comment
Parallel-plate capacitor	arepsilon A/d	A: Area d: Distance
Coaxial cable	$\frac{2\pi\varepsilon l}{\ln\left(a_2/a_1\right)}$	a ₁ : Inner radius a ₂ : Outer radius <i>I</i> : Length
Pair of parallel wires ^[17]	$\frac{2\pi\varepsilon l}{\operatorname{arcosh}\left(\frac{d^2}{2a^2}-1\right)} = \frac{\pi\varepsilon l}{\operatorname{arcosh}\left(\frac{d}{2a}\right)} = \frac{\pi\varepsilon l}{\ln\left(\frac{d}{2a}+\sqrt{\frac{d^2}{4a^2}-1}\right)}$	a: Wire radius d: Distance, d > 2a <i>I</i> : Length of pair
Wire parallel to wall ^[17]	$\frac{4\pi\varepsilon l}{\operatorname{arcosh}\left(\frac{2d^2}{a^2}-1\right)} = \frac{2\pi\varepsilon l}{\operatorname{arcosh}\left(\frac{d}{a}\right)} = \frac{2\pi\varepsilon l}{\ln\left(\frac{d}{a}+\sqrt{\frac{d^2}{a^2}-1}\right)}$	a: Wire radius d: Distance, d > a <i>I</i> : Wire length
Concentric spheres		a_1 : Inner radius a_2 : Outer radius
Two spheres, equal radius ^{[18][19]}	$= 2\pi\varepsilon a \left\{ \ln 2 + \gamma - \frac{1}{2}\ln\left(\frac{d}{a} - 2\right) + O\left(\frac{d}{a} - 2\right) \right\}$	a: Radius d: Distance, d > 2a D = d/2a γ: <u>Euler's constant</u>
Sphere in front of wall ^[18]	$4\pi\varepsilon a\sum_{n=1}^{\infty}\frac{\sinh\left(\ln\left(D+\sqrt{D^2-1}\right)\right)}{\sinh\left(n\ln\left(D+\sqrt{D^2-1}\right)\right)}$	a: Radius d: Distance, d > a D = d/a
Sphere	$4\pi\varepsilon a$	a: Radius
Circular disc	8arepsilon a	a: Radius
Thin straight wire, finite length ^{[20][21][22]}	$\frac{2\pi\varepsilon l}{\Lambda}\left\{1+\frac{1}{\Lambda}\left(1-\ln 2\right)+\frac{1}{\Lambda^2}\left[1+\left(1-\ln 2\right)^2-\frac{\pi^2}{12}\right]+O\left(\frac{1}{\Lambda^3}\right)\right\}$	a: Wire radius /: Length Λ: In(//a)