Orbital Simulations on the Deflection of Near Earth Objects by Directed Energy

Qicheng Zhang¹,

Kevin Walsh, Carl Melis, Gary Hughes, Philip Lubin

¹Dept of Physics / College of Creative Studies, University of California, Santa Barbara

SPIE Optics + Photonics San Diego, CA - August 10, 2015

deepspace.ucsb.edu

Near Earth Objects (NEO)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Near Earth Objects (NEO)
 - most are not dangerous (only needs *q* < 1.3 au)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- Near Earth Objects (NEO)
 - most are not dangerous (only needs q < 1.3 au)</p>
 - few on collision course with Earth

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Near Earth Objects (NEO)
 - most are not dangerous (only needs q < 1.3 au)
 - few on collision course with Earth
- Potentially Hazardous Asteroids (PHA) - NEO subgroup
 - $\blacksquare~$ MOID < 0.05 au, diam $\gtrsim 140~m$

Figure: Orbits of known PHA as of 2013. *Credit: NASA/JPL-Caltech*

- Near Earth Objects (NEO)
 - most are not dangerous (only needs q < 1.3 au)
 - few on collision course with Earth
- Potentially Hazardous Asteroids (PHA) - NEO subgroup
 - $\blacksquare~$ MOID < 0.05 au, diam $\gtrsim 140~m$
 - smaller asteroids still dangerous historically common
 - \blacksquare Tunguska (1908) \sim 80 m
 - *Curuçá River* (1930) ~ 20 m
 - *Chelyabinsk* (2013) ~ 20 m

Figure: Orbits of known PHA as of 2013. *Credit: NASA/JPL-Caltech*

Barringer Crater

Figure: "Meteor Crater" in Arizona, formed by the impact (energy ~ 10 MT) of a 50 m iron-nickel asteroid 50,000 years ago. Credit: NASA Earth Observatory

Solution: Laser Ablation

Figure: A laser beam heats and vaporizes material off an asteroid into a plume, generating thrust in the opposite direction.

Effectiveness of Ablation

How much thrust do we get for a given power?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

How much thrust do we get for a given power?

\sim 100 μ N/W \leftrightarrow 10 kW/N

(from theory + lab measurements)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Effectiveness of Thrust

How far is an asteroid deflected by a given thrust?

Effectiveness of Thrust

How far is an asteroid deflected by a given thrust?

need orbital simulations

■ simple three body Newtonian system:

- 1 Sun
- 2 Earth
- 3 asteroid

■ simple three body Newtonian system:

- 1 Sun
- 2 Earth
- 3 asteroid
- \blacksquare assume asteroid density of 2 g/cm^3

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

simple three body Newtonian system:

- 1 Sun
- 2 Earth
- 3 asteroid
- assume asteroid density of 2 g/cm³
- initial conditions generation:
 - 1 start with Earth, asteroid at same point in space
 - 2 select orbital elements for asteroid, then use two body solution to (slightly) move back in time, separating the Earth and asteroid

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

3 numerically integrate in reverse to laser start time

■ simple three body Newtonian system:

- 1 Sun
- 2 Earth
- 3 asteroid
- assume asteroid density of 2 g/cm³
- initial conditions generation:
 - 1 start with Earth, asteroid at same point in space
 - 2 select orbital elements for asteroid, then use two body solution to (slightly) move back in time, separating the Earth and asteroid

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

3 numerically integrate in reverse to laser start time

Where is the laser?

DE-STAR: "Directed Energy System for Targeting of Asteroids and exploRation"

DE-STAR: "Directed Energy System for Targeting of Asteroids and exploRation"

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Two main categories:

DE-STAR: "Directed Energy System for Targeting of Asteroids and exploRation"

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Two main categories:

1 stand-on - laser delivered to the target asteroid

DE-STAR: "Directed Energy System for Targeting of Asteroids and exploRation"

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Two main categories:

- 1 stand-on laser delivered to the target asteroid
- 2 stand-off laser targets asteroid from Earth orbit

laser delivered to the target asteroid

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

laser delivered to the target asteroid

• small: 1 MW (\sim 100 N) system fits in SLS Block 1

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

laser delivered to the target asteroid

- small: 1 MW (~100 N) system fits in SLS Block 1
- delay by transit to target a few days to many years

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

laser delivered to the target asteroid

- \blacksquare small: 1 MW (${\sim}100$ N) system fits in SLS Block 1
- delay by transit to target a few days to many years
- easily maneuvered relative to asteroid
 - thrust may be selected to be in any direction

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• assume constant 100 μ N/W

- **assume constant 100** μ N/W
- direction of thrust measured relative to velocity of asteroid

- **a** assume constant 100 μ N/W
- direction of thrust measured relative to velocity of asteroid

- **assume constant 100** μ N/W
- direction of thrust measured relative to velocity of asteroid

- **a** assume constant 100 μ N/W
- direction of thrust measured relative to velocity of asteroid

 \blacksquare consider only constant α , β

Consider asteroid similar to 99942 Apophis:

Consider asteroid similar to 99942 Apophis:

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

• 325 m diameter \implies 3.6 \times 10¹⁰ kg

Consider asteroid similar to 99942 Apophis:

- \blacksquare 325 m diameter \implies 3.6 \times 10¹⁰ kg
 - $\blacksquare~\sim 1~\text{GT}$ energy released if impact

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Consider asteroid similar to 99942 Apophis:

- 325 m diameter \implies 3.6 \times 10¹⁰ kg
 - $\blacksquare~\sim 1~\text{GT}$ energy released if impact

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- orbital parameters:
 - semi-major axis: a = 0.92 au
 - eccentricity: e = 0.19
 - inclination: $i = 6^{\circ}$

Stand-On System in Action

Deflection of Asteroid Over 5 Years

Deflection with $100\ N$ / $1\ MW$

How much time to deflect 325 m asteroid by 2 Earth radii?
How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years • $\alpha = 90^{\circ}$: ?? years

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years

•
$$\alpha = 90^{\circ}$$
: ?? years

•
$$\alpha = 135^{\circ}$$
: 3.0 years

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years • $\alpha = 90^{\circ}$: ?? years • $\alpha = 135^{\circ}$: 3.0 years

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years • $\alpha = 90^{\circ}$: ?? years • $\alpha = 135^{\circ}$: 3.0 years For $\alpha = 0^{\circ}$: • $\beta = 0^{\circ}$: 2.5 years

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years • $\alpha = 90^{\circ}$: ?? years • $\alpha = 135^{\circ}$: 3.0 years For $\alpha = 0^{\circ}$: • $\beta = 0^{\circ}$: 2.5 years • $\beta = 45^{\circ}$: 3.0 years

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years • $\alpha = 90^{\circ}$: ?? years • $\alpha = 135^{\circ}$: 3.0 years For $\alpha = 0^{\circ}$: $\beta = 0^{\circ}$: 2.5 years $\beta = 45^{\circ}$: 3.0 years $\beta = 90^{\circ}$: ?? years

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

How much time to deflect 325 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 2.5 years • $\alpha = 45^{\circ}$: 3.1 years • $\alpha = 90^{\circ}$: ?? years • $\alpha = 135^{\circ}$: 3.0 years For $\alpha = 0^{\circ}$: $\beta = 0^{\circ}$: 2.5 years ■ $\beta = 45^{\circ}$: 3.0 years $\beta = 90^{\circ}$: ?? years

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

What if we had more time? How big of a laser do we need then? (100 $\mu{\rm N/W}\leftrightarrow$ 10 kW/N)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

What if we had more time? How big of a laser do we need then? (100 $\mu {\rm N/W} \leftrightarrow$ 10 kW/N)

Using $\alpha = \beta = 0^{\circ}$: • $\Delta t = 5$ years: need 26 N / 260 kW

What if we had more time? How big of a laser do we need then? (100 $\mu {\rm N/W} \leftrightarrow$ 10 kW/N)

Using $\alpha = \beta = 0^{\circ}$: $\Delta t = 5$ years:

need 26 N / 260 kW

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → のへで

 ▲ *t* = 10 years: need 6 N / 60 kW

What if we had more time? How big of a laser do we need then? (100 $\mu {\rm N/W} \leftrightarrow$ 10 kW/N)

- Using $\alpha = \beta = 0^{\circ}$:
 - Δt = 5 years: need 26 N / 260 kW
 - Δt = 10 years: need 6 N / 60 kW
 - ▲ *t* = 15 years: need 2 N / 20 kW

Consider a Tunguska-class asteroid:

Consider a Tunguska-class asteroid:

 \blacksquare 80 m diameter \implies 5.4 \times 10⁸ kg

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Consider a Tunguska-class asteroid:

- \blacksquare 80 m diameter \implies 5.4 $\times\,10^8$ kg
 - $\blacksquare~\sim 15~\text{MT}$ energy released if impact

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Consider a Tunguska-class asteroid:

- \blacksquare 80 m diameter \implies 5.4 \times 10⁸ kg
 - $\blacksquare~\sim 15~\text{MT}$ energy released if impact
- use Apophis-like orbital parameters as before

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Small Asteroid Deflection with 100 N / 1 MW

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$:

•
$$\alpha = 0^{\circ}$$
: 0.45 years

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 0.45 years

•
$$\alpha = 45^{\circ}$$
: 0.57 years

▲□▶ ▲圖▶ ▲登▶ ▲登▶ — 登…

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 0.45 years • $\alpha = 45^{\circ}$: 0.57 years • $\alpha = 90^{\circ}$: 0.45 years

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$:

•
$$\alpha = 0^{\circ}$$
: 0.45 years

•
$$\alpha = 45^{\circ}$$
: 0.57 years

•
$$\alpha = 90^{\circ}$$
: 0.45 years

•
$$\alpha = 135^{\circ}$$
: 0.4 years

<ロト < 回ト < 回ト < 回ト < 回ト = 三回</p>

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$:

•
$$\alpha = 0^{\circ}$$
: 0.45 years

•
$$\alpha = 45^{\circ}$$
: 0.57 years

•
$$\alpha = 90^{\circ}$$
: 0.45 years

<ロト < 回ト < 回ト < 回ト < 回ト = 三回</p>

•
$$\alpha = 135^{\circ}$$
: 0.4 years

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 0.45 years • $\alpha = 45^{\circ}$: 0.57 years • $\alpha = 90^{\circ}$: 0.45 years • $\alpha = 135^{\circ}$: 0.4 years For $\alpha = 0^{\circ}$: • $\beta = 0^{\circ}$: 0.45 years

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 0.45 years • $\alpha = 45^{\circ}$: 0.57 years • $\alpha = 90^{\circ}$: 0.45 years • $\alpha = 135^{\circ}$: 0.4 years For $\alpha = 0^{\circ}$: • $\beta = 0^{\circ}$: 0.45 years • $\beta = 45^{\circ}$: 0.47 years

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 0.45 years • $\alpha = 45^{\circ}$: 0.57 years • $\alpha = 90^\circ$: 0.45 years • $\alpha = 135^{\circ}$: 0.4 years For $\alpha = 0^{\circ}$: $\beta = 0^{\circ}$: 0.45 years ■ $\beta = 45^{\circ}$: 0.47 years $\beta = 90^{\circ}$: ?? years

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

How much time to deflect 80 m asteroid by 2 Earth radii? Which direction should the thrust be in?

For $\beta = 0^{\circ}$: • $\alpha = 0^{\circ}$: 0.45 years • $\alpha = 45^{\circ}$: 0.57 years • $\alpha = 90^\circ$: 0.45 years • $\alpha = 135^{\circ}$: 0.4 years For $\alpha = 0^{\circ}$: $\beta = 0^{\circ}$: 0.45 years ■ $\beta = 45^{\circ}$: 0.47 years $\beta = 90^{\circ}$: ?? years

How does optimal thrust direction change?

▲ロト ▲理 ト ▲ヨト ▲ヨト - ヨ - のの⊙

•
$$\beta = 0^\circ$$
:
• $\Delta t = 0.3$ years:
optimal $\alpha = 100^\circ$

•
$$\Delta t = 0.5$$
 years:
optimal $\alpha = 140^{\circ}$

For $\beta = 0^{\circ}$:

How does optimal thrust direction change?

- $\Delta t = 0.3$ years: optimal $\alpha = 100^{\circ}$
- $\Delta t = 0.5$ years: optimal $\alpha = 140^{\circ}$
- $\Delta t = 0.7$ years: optimal $\alpha = 160^{\circ}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Dac

For $\beta = 0^{\circ}$:

How does optimal thrust direction change?

- $\Delta t = 0.3$ years: optimal $\alpha = 100^{\circ}$
- $\Delta t = 0.5$ years: optimal $\alpha = 140^{\circ}$
- $\Delta t = 0.7$ years:
 - optimal $\alpha = 160^{\circ}$
- $\Delta t = 0.9$ years: optimal $\alpha = 170^{\circ}$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

Altitude Angle of Thrust (°)

How does optimal thrust direction change?

Sac

For $\alpha = 0^{\circ}$:

How does optimal thrust direction change?

•
$$\Delta t = 0.3$$
 years:
optimal $\beta = 65^{\circ}$

• $\Delta t = 0.5$ years: optimal $\beta = 5^{\circ}$

•
$$\Delta t = 0.7$$
 years:
optimal $\beta = \sim 0^{\circ}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Optimal Thrust Direction

For $\alpha = 0^{\circ}$:

How does optimal thrust direction change?

- $\Delta t = 0.3$ years: optimal $\beta = 65^{\circ}$
- $\Delta t = 0.5$ years: optimal $\beta = 5^{\circ}$
- $\Delta t = 0.7$ years: optimal $\beta = \sim 0^{\circ}$
- $\Delta t = 0.9$ years: optimal $\beta = \sim 0^{\circ}$

Dac

How about with other orbits?

How does *eccentricity* affect deflection? ($\alpha = \beta = 0^{\circ}$)

How does *eccentricity* affect deflection? ($\alpha = \beta = 0^{\circ}$)

3

Dac

How does *eccentricity* affect deflection? ($\alpha = \beta = 0^{\circ}$)

How does *eccentricity* affect deflection? ($\alpha = \beta = 0^{\circ}$)

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

Sac

How does *eccentricity* affect deflection? ($\alpha = \beta = 0^{\circ}$)

996

How does *eccentricity* affect deflection? ($\alpha = \beta = 0^{\circ}$)

 50% drop in effectiveness from e = 0.2 to e = 0.11

How does *eccentricity* affect deflection? ($\alpha = \beta = 0^{\circ}$)

- 50% drop in effectiveness from
 - e = 0.2 to e = 0.11

 slower decay in effectiveness for e > 0.25

How does *inclination* affect deflection? ($\alpha = \beta = 0^{\circ}$)

How does *inclination* affect deflection? ($\alpha = \beta = 0^{\circ}$)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

How does *inclination* affect deflection? ($\alpha = \beta = 0^{\circ}$)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How does *inclination* affect deflection? ($\alpha = \beta = 0^{\circ}$)

How does *inclination* affect deflection? ($\alpha = \beta = 0^{\circ}$)

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

Dac

How does *inclination* affect deflection? ($\alpha = \beta = 0^{\circ}$)

■ some decay for *i* < 30° and *i* > 40°

500

How does *inclination* affect deflection? ($\alpha = \beta = 0^{\circ}$)

- some decay for
 - $i < 30^{\circ}$ and $i > 40^{\circ}$
- dependence weaker than with eccentricity

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

SQC

low eccentricity, low inclination preferred

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

low eccentricity, low inclination *preferred* (low Δv for stand-on laser to reach target)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

low eccentricity, low inclination *preferred* (low Δv for stand-on laser to reach target)

reminder: orbit generally not a choice

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

laser targets asteroid from Earth orbit

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

laser targets asteroid from Earth orbit

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

immediate response to threat

laser targets asteroid from Earth orbit

- immediate response to threat
- can target objects in any orbit

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

laser targets asteroid from Earth orbit

- immediate response to threat
- can target objects in any orbit
- no control over thrust direction

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

laser targets asteroid from Earth orbit

- immediate response to threat
- can target objects in any orbit
- no control over thrust direction
- far from target: beam diverges \implies flux decreases

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Range is limited by flux density after beam divergence.

$\label{eq:Range} \begin{array}{l} \mbox{Range is limited by flux density after beam divergence.} \\ \mbox{(need} \sim 10^7 \mbox{ W/m}^2 \mbox{ to ablate most rock)} \end{array}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

$\label{eq:Range} \begin{array}{l} \mbox{Range is limited by flux density after beam divergence.} \\ \mbox{(need} \sim 10^7 \mbox{ W/m}^2 \mbox{ to ablate most rock)} \end{array}$

Ablation range:

■ 500 m array: 0.008 au (~ 3 LD)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$\label{eq:Range} \begin{array}{l} \mbox{Range is limited by flux density after beam divergence.} \\ \mbox{(need} \sim 10^7 \mbox{ W/m}^2 \mbox{ to ablate most rock)} \end{array}$

Ablation range:

- 500 m array: 0.008 au (~ 3 LD)
- 1 km array: 0.03 au (~ 12 LD)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\label{eq:Range} \begin{array}{l} \mbox{Range is limited by flux density after beam divergence.} \\ \mbox{(need} \sim 10^7 \mbox{ W/m}^2 \mbox{ to ablate most rock)} \end{array}$

Ablation range:

- 500 m array: 0.008 au (~ 3 LD)
- 1 km array: 0.03 au (~ 12 LD)
- 2 km array: 0.1 au (~ 40 LD)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\label{eq:Range} \begin{array}{l} \mbox{Range is limited by flux density after beam divergence.} \\ \mbox{(need} \sim 10^7 \mbox{ W/m}^2 \mbox{ to ablate most rock)} \end{array}$

Ablation range:

- 500 m array: 0.008 au (~ 3 LD)
- 1 km array: 0.03 au (~ 12 LD)
- 2 km array: 0.1 au (~ 40 LD)

BIG array needed

• square solar array, same width D as laser array

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• square solar array, same width D as laser array

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- 1360 W/m² in Earth orbit
- 50% efficiency: solar \rightarrow laser

■ square solar array, same width *D* as laser array

- 1360 W/m² in Earth orbit
- 50% efficiency: solar \rightarrow laser
- beam divergence half angle λ/D
 - circular spot with uniform illumination

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

■ square solar array, same width *D* as laser array

- 1360 W/m² in Earth orbit
- **50%** efficiency: solar \rightarrow laser
- beam divergence half angle λ/D
 - circular spot with uniform illumination
- thrust on asteroid directed away from Earth

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

■ square solar array, same width *D* as laser array

- 1360 W/m² in Earth orbit
- **50%** efficiency: solar \rightarrow laser
- beam divergence half angle λ/D
 - circular spot with uniform illumination
- thrust on asteroid directed away from Earth

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

no thrust when out of range

■ square solar array, same width *D* as laser array

- 1360 W/m² in Earth orbit
- 50% efficiency: solar \rightarrow laser
- beam divergence half angle λ/D
 - circular spot with uniform illumination
- thrust on asteroid directed away from Earth
 - no thrust when out of range
 - reduced thrust when spot is bigger than target

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>
Stand-Off Numerical Setup

■ square solar array, same width *D* as laser array

- 1360 W/m² in Earth orbit
- 50% efficiency: solar \rightarrow laser
- beam divergence half angle λ/D
 - circular spot with uniform illumination
- thrust on asteroid directed away from Earth
 - no thrust when out of range
 - reduced thrust when spot is bigger than target
 - only turn on if Earth is ahead or behind the target

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$\mathsf{Stand}\text{-}\mathbf{Off} \ \mathsf{Modes}$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Stand-Off Modes

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

How big of an asteroid can we deflect by 2 Earth radii?

How big of an asteroid can we deflect by 2 Earth radii?

How big of an asteroid can we deflect by 2 Earth radii?

How big of an asteroid can we deflect by 2 Earth radii?

- 400 m array: none
- 600 m array: 15 m
- 800 m array: 30 m

How big of an asteroid can we deflect by 2 Earth radii?

- 400 m array: none
- 600 m array: 15 m
- 800 m array: 30 m
- 1.2 km array: 100 m

How big of an asteroid can we deflect by 2 Earth radii?

- 400 m array: none
- 600 m array: 15 m
- 800 m array: 30 m
- 1.2 km array: 100 m
- 1.6 km array: 250 m

How big of an asteroid can we deflect by 2 Earth radii?

- 400 m array: none
- 600 m array: 15 m
- 800 m array: 30 m
- 1.2 km array: 100 m
- 1.6 km array: 250 m
- 2 km array: 1 km

reminder: simulation assumes constant mass

reminder: simulation assumes constant mass

(not accurate for very small asteroids)

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

A Typical Comet

high eccentricity, high inclination orbit

• consider e = 0.98, $i = 130^{\circ}$, q = 0.8 au

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A Typical Comet

- high eccentricity, high inclination orbit
 - consider e = 0.98, $i = 130^{\circ}$, q = 0.8 au
 - typically $\Delta v \sim$ 70 km/s from Earth to comet

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

stand-on mission not practical

A Typical Comet

high eccentricity, high inclination orbit

- consider e = 0.98, $i = 130^{\circ}$, q = 0.8 au
- typically $\Delta v \sim$ 70 km/s from Earth to comet

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

stand-on mission not practical

■ large fraction (\sim 50%) water ice

 \blacksquare low vaporization flux $\sim 300 \; W/m^2$

Need flux density $\sim 300 \ \text{W}/\text{m}^2$ to ablate water ice.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Need flux density $\sim 300 \ \text{W}/\text{m}^2$ to ablate water ice.

Ablation range:

- 500 m array: 1 au
- 1 km array: 5 au
- 2 km array: 20 au

Need flux density $\sim 300 \ \text{W}/\text{m}^2$ to ablate water ice.

Ablation range:

- 500 m array: 1 au
- 1 km array: 5 au
- 2 km array: 20 au

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

 \equiv

Dac

■ Sun: 2 au

Need flux density $\sim 300 \text{ W/m}^2$ to ablate water ice.

Ablation range:

- 500 m array: 1 au
- 1 km array: 5 au
- 2 km array: 20 au
- Sun: 2 au

farther for other volatiles

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

Comet Deflection in Action

Deflection of Comet Over 2 Years

How big of a comet can we deflect by 5 Earth radii?

How big of a comet can we deflect by 5 Earth radii?

How big of a **comet** can we deflect by **5 Earth radii**?

How big of a **comet** can we deflect by **5 Earth radii**?

- 200 m array: none
- 400 m array: 80 m
- 600 m array: 450 m

How big of a comet can we deflect by 5 Earth radii?

- 200 m array: none
- 400 m array: 80 m
- 600 m array: 450 m
- 800 m array: 1.4 km

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

Dac

How big of a **comet** can we deflect by **5 Earth radii**?

- 200 m array: none
- 400 m array: 80 m
- 600 m array: 450 m
- 800 m array: 1.4 km
- 1 km array: 2 km

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

Dac

near future: stand-on

near future: stand-on

small - single launch possible

near future: stand-on

- small single launch possible
- handles all asteroidal threats given sufficient time

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

near future: stand-on

- small single launch possible
- handles all asteroidal threats given sufficient time

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

■ in a while: stand-off

near future: stand-on

- small single launch possible
- handles all asteroidal threats given sufficient time

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

- in a while: stand-off
 - must be BIG to be of use in deflection

near future: stand-on

- small single launch possible
- handles all asteroidal threats given sufficient time

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- in a while: stand-off
 - must be BIG to be of use in deflection
 - operates on short timescales

near future: stand-on

- small single launch possible
- handles all asteroidal threats given sufficient time

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- in a while: stand-off
 - must be BIG to be of use in deflection
 - operates on short timescales
 - necessary for deflecting long period comets

Keys to Success

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Keys to Success

Early detection / threat confirmation
Keys to Success

Early detection / threat confirmation

Prepare system in advance

Keys to Success

- Early detection / threat confirmation
- Prepare system in advance
- Otherwise, much more powerful lasers (expensive)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Acknowledgements

- Kevin Walsh
- Carl Melis
- Gary Hughes
- Philip Lubin

- Duncan, Levison, Lee -Symplectic Massive Body Algorithm (SyMBA)
- NASA Space Grant:
 NASA NNX10AT93H

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Acknowledgements

- Kevin Walsh
- Carl Melis
- Gary Hughes
- Philip Lubin

- Duncan, Levison, Lee -Symplectic Massive Body Algorithm (SyMBA)
- NASA Space Grant:
 NASA NNX10AT93H

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Code: http://github.com/ucsbdeepspace

UCSB Experimental Cosmology Group deepspace.ucsb.edu