Physics 6B - MWF - Midterm 1

Test #: A Name: Perm #: Section (10-11 or 12-1):

You MUST put the **TEST** # in the first answer bubble. The TA will explain. YOU MUST do this or the test will not be graded.

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN

- 1. Which of the following is the mass density of a material? (11-1)
 - A) The material's weight per unit volume
 - B) The material's mass per unit volume
 - C) The material's specific gravity
 - D) The material's volume per unit weight
 - E) The material's volume per unit mass
- 2. A block of material has a density ρ . A second block of equal volume has three times the mass of the first. What is the density of the second block? (11-4)
 - A) ρ
 - B) 3ρ
 - C) ρ/3
 - D) 9p
 - E) ρ/9
- 3. A glass is filled with water. The gauge pressure at the top of the glass is zero, and the gauge pressure at the bottom is *P*. A second glass with three times the height and twice the diameter is also filled with water. What is the pressure at the bottom of the second glass?
 - A) *P*
 - B) 2*P*
 - C) 3P
 - D) 3P/2
 - E) 3P/4

- 4. At what depth in seawater is the gauge pressure equal to 1 atm? The density of seawater is 1.03×10^3 kg/m³.
 - A) 5 m
 - B) 7.5 m
 - C) 10 m
 - D) 15 m
 - E) 20 m
- 5. A ball bearing that has a density of 5.16 g/cm^3 is held at rest under the surface of a liquid that has a density of 2.50 g/cm³. The magnitude of the acceleration of the ball bearing just after it is released is
 - A) 5.0 m/s^2 .
 - B) 14 m/s^2 .
 - C) 10 m/s^2 .
 - D) 6.5 m/s^2 .
 - E) 1.6 m/s^2 .
- 6. Two objects with different volumes have the same apparent weight when submerged in water. If they are placed in a vacuum,
 - A) both weigh less than before.
 - B) the one with the smaller volume weighs less than the other.
 - C) the one with the smaller volume weighs more than the other.
 - D) they weigh the same.
 - E) both weigh more than before.
- 7. A rock is thrown into a swimming pool that is filled with water at a uniform temperature. Which of the following statements is TRUE?
 - A) The buoyant force on the rock is zero as it sinks.
 - B) The buoyant force on the rock increases as it sinks.
 - C) The buoyant force on the rock decreases as it sinks.
 - D) The buoyant force on the rock is constant as it sinks.
 - E) The buoyant force on the rock as it sinks is nonzero at first but becomes zero once the terminal velocity is reached.

- 8. Water from a tap is flowing at a uniform rate of 24 cm³/s into a cylindrical container. An exit tube is mounted on the side of the container at height h/2 from the base. The height *h* of the water remains constant. The volume flow at which the water leaves the container is
 - A) $12 \text{ cm}^3/\text{s}$.
 - B) $24 \text{ cm}^3/\text{s}.$
 - C) $36 \text{ cm}^3/\text{s}$.
 - D) $48 \text{ cm}^3/\text{s}$.
 - E) 72 cm³/s.
- 9. A horizontal pipe narrows from a diameter of 10 to 5 cm. For a non-viscous fluid flowing from the larger diameter to the smaller,
 - A) the velocity and pressure both increase.
 - B) the velocity increases and the pressure decreases.
 - C) the velocity decreases and the pressure increases.
 - D) the velocity and pressure both decrease.
 - E) either the velocity or the pressure changes but not both.
- 10. A hurricane-strength wind is blowing at a speed of 100 km/hr over a flat roof of 100 m². Assuming the inside of the house to be at 1 atm pressure and the density of air is 1.3 kg/m³, calculate the pressure difference between the inside and the outside of the roof.
 - A) 500 Pa lower outside
 - B) 1000 Pa higher outside
 - C) 500 Pa lower inside
 - D) 1000 Pa lower outside
 - E) 18 Pa lower outside
- 11. Any body moving with simple harmonic motion is being acted on by a force that is
 - A) constant.
 - B) proportional to a sine or cosine function of the displacement.
 - C) proportional to the inverse square of the displacement.
 - D) directly proportional to the displacement.
 - E) proportional to the square of the displacement.

12. The equation for the period T of a mass m oscillating with simple harmonic motion at

the end of a spring with a force constant k is $T = 2\pi \sqrt{m/k}$. A mass *m* that is oscillating on a spring with a force constant of 0.52 N/m has a period of 2.1 s. On a second spring, the same mass has a period of 3.5 s. The force constant of the second spring is

- A) impossible to determine because the mass is not given.
- B) 0.19 N/m.
- C) 1.4 N/m.
- D) 0.31 N/m.
- E) 0.75 N/m.
- 13. A 2.50-kg object is attached to a spring of force constant k = 4.50 kN/m. The spring is stretched 10.0 cm from equilibrium and released. What is the maximum kinetic energy of this system?
 - A) 45.0 J
 - B) 22.5 J
 - C) 56.0 J
 - D) $2.25 \times 105 \text{ J}$
 - E) 4.50 J

Answer Key

- 1. B 2. B 3. C

- 4. C 5. A
- 6. B
- 7. D
- 8. B
- 9. B
- 10. A
- 11. D
- 12. B
- 13. B