Electromagnetic Waves

Visible light, radio waves, cell communications, UV tanning, HDTV - these are all examples of EM waves
\leftarrow Increasing Frequency (v)

CLASS FREQUENCY WAVELENGTH ENERGY

Y	300 EHz	1 pm	1.24 MeV
HX	30 EHz	10 pm	124 keV
SX	3 EHz	100 pm	12.4 keV
SX	300 PHz	1 nm	1.24 keV
EUV	30 PHz	10 nm	124 eV
NUV	3 PHz	100 nm	12.4 eV
NIR	300 THz	$1 \mu \mathrm{~m}$	1.24 eV
MIR	30 THz	$10 \mu \mathrm{~m}$	124 meV
FIR	3 THz	$100 \mu \mathrm{~m}$	12.4 meV
EHF	300 GHz	1 mm	1.24 meV
SHF	30 GHz	1 cm	$124 \mu \mathrm{eV}$
UHF	3 GHz	1 dm	$12.4 \mu \mathrm{eV}$
VHF	300 MHz	1 m	$1.24 \mu \mathrm{eV}$
HF	30 MHz	10 m	124 neV
MF	3 MHz	100 m	12.4 neV
LF	300 kHz	1 km	1.24 neV
VLF	30 kHz	10 km	124 peV
VF/ULF	3 kHz	100 km	12.4 peV
SLF	300 Hz	1 Mm	1.24 peV
ELF	30 Hz	10 Mm	124 feV

Maxwell's Equations of Electromagnetism
No magnetic Monopoles
Changing B field induces E field and Changing E field induces B field

1) $\nabla \bullet \vec{E}=\rho / \varepsilon_{0}\left(\rho=\right.$ charge/volume or Coulomb/m $\left.{ }^{3}\right) \oint_{\Sigma} \vec{E} \bullet d \vec{A}=Q_{\text {enc }} / \varepsilon_{0}$
2) $\nabla \bullet \vec{B}=0$
$\oint_{\Sigma} \vec{B} \bullet d \vec{A}=0$
(no magnetic monopoles found yet - if they exist then $\nabla \bullet \vec{B} \propto \rho_{m}$ (Mag monopole density)
3) $\nabla x \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\oint_{C} \vec{E} \bullet d \vec{l}=-\frac{d}{d t} \int_{\Sigma} \vec{B} \bullet d \vec{A}$
4) $\nabla x \vec{B}=\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}$
$\oint_{C} \vec{B} \bullet d \vec{l}=\varepsilon_{0} \mu_{0} \frac{d}{d t} \int_{\Sigma} \vec{E} \bullet d \vec{A}+\mu_{0} I_{e n c}$
$\left(\vec{J}=\right.$ current density vector $\left.\left(\mathrm{amp} / \mathrm{m}^{2}\right) \quad I=\int_{\Sigma} \vec{J} \bullet d \vec{A}\right)$
Define Displacement Current as:
$\vec{J}_{D} \equiv \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}$
5) $\nabla x \vec{B}=\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}=\mu_{0}\left(\vec{J}_{D}+\vec{J}\right)$

$$
\oint_{C} \vec{B} \bullet d \vec{l}=\mu_{0} I_{D}+\mu_{0} I_{e n c}
$$

Note that \vec{J} is real current density while \vec{J}_{D} is a ficticious current density
Note that Stokes Theorem for ANY well behaved vector field $\overrightarrow{\mathrm{F}}: \quad \oint_{C} \vec{F} \bullet d \vec{l}=\int_{\Sigma} \nabla x \vec{F} \bullet d \vec{A}$

Maxwell's Equations of Electromagnetism

 Allow existence of magnetic monopoles1) $\nabla \bullet \vec{E}=\rho / \varepsilon_{0}\left(\rho=\right.$ charge $/$ volume or Coulomb $\left./ \mathrm{m}^{3}\right)$

$$
\begin{aligned}
& \oint_{\Sigma} \vec{E} \bullet d \vec{A}=Q_{e n c} / \varepsilon_{0} \\
& \oint_{\Sigma} \vec{B} \bullet d \vec{A}=\mu_{0} Q_{m-e n c}
\end{aligned}
$$

2) $\nabla \bullet \vec{B}=\mu_{0} \rho_{m}$ (IF magnetic monopoles)
3) $\nabla x \vec{E}=-\frac{\partial \vec{B}}{\partial t}-\vec{J}_{m}$ (IF magnetic monopoles)

$$
\begin{aligned}
& \oint_{C} \vec{E} \bullet d \vec{l}=-\frac{d}{d t} \int_{\Sigma} \vec{B} \bullet d \vec{A}-I_{m-e n c} \\
& \oint_{C} \vec{B} \bullet d \vec{l}=\varepsilon_{0} \mu_{0} \frac{d}{d t} \int_{\Sigma} \vec{E} \bullet d \vec{A}+\mu_{0} I_{e n c}
\end{aligned}
$$

4) $\nabla x \vec{B}=\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}$
$\left(\vec{J}=\right.$ current density (flux) vector $\left.\left(\mathrm{amp} / \mathrm{m}^{2}\right) I=\int_{\Sigma} \vec{J} \bullet d \vec{A}\right)$ - can also be a mag monopole current
Force Law $\vec{F}=q_{e}(\vec{E}+\vec{v} \times \vec{B})+q_{m}\left(\vec{B}-\frac{v}{c^{2}} x \vec{E}\right)$ (right/left hand rule for electric/magnetic charges)
Note that Divergence (Gauss' Law) for ANY well behaved vector field $\overrightarrow{\mathrm{F}}$:
$\oint_{\Sigma} \vec{F} \bullet d \vec{A}=\int_{V} \nabla \bullet \vec{F} d V \rightarrow$ continuity eq for flux field $\overrightarrow{\mathrm{F}} \rightarrow \nabla \bullet \vec{F}+\partial \rho / \partial t=0$

Units - not just MKS

 What about charge? - Farad's - Henry's$\mu_{0} \equiv 4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
$H=$ Henry
What is a Henry (unit of inductance)?
Recall:
V=Ldi/dt
L=inductance and units are in Henry's
V has units of J/Q (Joule/ Coulomb)
di/dt has units of $\mathrm{Coul} / \mathrm{s}^{2}$
$H \equiv L \equiv \frac{\mathrm{~J} / \text { Coul }}{\mathrm{Coul} / \mathrm{s}^{2}}=\frac{\mathrm{J}-\mathrm{s}^{2}}{\text { Coul }^{2}}=\frac{\mathrm{kg}-\mathrm{m}^{2}}{\text { Coul }^{2}}=$ Henry
$\epsilon_{0} \cong 8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}(\mathrm{Farad} / \mathrm{m})$
What is a Farad (unit of capacitance C)?
$F \equiv C \equiv \frac{Q}{V}=\frac{\text { Coul }}{\mathrm{J} / \text { Coul }}=\frac{\text { Coul }^{2}}{\mathrm{~J}}=\frac{\text { Coul }^{2}-\mathrm{s}^{2}}{\mathrm{~kg}-\mathrm{m}^{2}}=F \mathrm{arad}$
$\mu_{0} \equiv 4 \pi \times 10^{-7} \mathrm{~kg}-\mathrm{m}-\operatorname{Coul}^{-2}(\mathrm{H} / \mathrm{m})$
$\epsilon_{0} \cong 8.854 \times 10^{-12} \mathrm{Coul}^{2} \mathrm{~s}^{2} \mathrm{~kg}^{-1} \mathrm{~m}^{-3}(\mathrm{~F} / \mathrm{m})$
Farad $*$ Henry $=s^{2}$

EM Wave Equation in General - Allow Mag Mono

$\nabla x(\nabla x \vec{F})=\nabla(\nabla \bullet \vec{F})-\nabla^{2}(\vec{F})$ for any well behaved vector field $\overrightarrow{\mathrm{F}}(\vec{x}, t)$
Well behave means no singularities and differentiable in space and time
There is no Physics here - just mathematics
Now let $\overrightarrow{\mathrm{F}}(\vec{x}, t)$ be the $\overrightarrow{\mathrm{E}}$ or $\overrightarrow{\mathrm{B}}$ field
E field

$$
\begin{aligned}
& \nabla x(\nabla x \vec{E})=\nabla(\nabla \bullet \vec{E})-\nabla^{2}(\vec{E})=\nabla\left(\rho_{e} / \varepsilon_{0}\right)-\nabla^{2}(\vec{E}) \\
& =\nabla x\left(-\frac{\partial \vec{B}}{\partial t}-\vec{J}_{m}\right)=-\frac{\partial(\nabla x \vec{B})}{\partial t}-\nabla x \vec{J}_{m}=-\frac{\partial\left(\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}\right)}{\partial t}-\nabla x \vec{J}_{m}=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}-\mu_{0} \frac{\partial \vec{J}}{\partial t}-\nabla x \vec{J}_{m} \\
& \rightarrow \nabla^{2}(\vec{E})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\mu_{0} \frac{\partial \vec{J}}{\partial t}+\nabla x \vec{J}_{m}+\nabla\left(\rho_{e}\right) / \varepsilon_{0} \\
& \rightarrow\left(\text { in vacuum and no mag monopoles) } \nabla^{2}(\vec{E})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0\right.
\end{aligned}
$$

B field

$$
\begin{aligned}
& \nabla x(\nabla x \vec{B})=\nabla(\nabla \bullet \vec{B})-\nabla^{2}(\vec{B})=\nabla\left(\mu_{0} \rho_{m}\right)-\nabla^{2}(\vec{B}) \\
& =\nabla x\left(\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}\right)=\varepsilon_{0} \mu_{0} \frac{\partial(\nabla x \vec{E})}{\partial t}+\mu_{0} \nabla x \vec{J}=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}-\varepsilon_{0} \mu_{0} \frac{\partial \overrightarrow{J_{m}}}{\partial t}+\mu_{0} \nabla x \vec{J} \\
& \rightarrow \nabla^{2}(\vec{B})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=\varepsilon_{0} \mu_{0} \frac{\partial \overrightarrow{J_{m}}}{\partial t}-\mu_{0} \nabla x \vec{J}+\mu_{0} \nabla\left(\rho_{m}\right) \\
& \rightarrow \text { (in vacuum and no mag monopoles) } \nabla^{2}(\vec{B})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0
\end{aligned}
$$

Maxwell's Equation in Vacuum No charges - No mag monopoles

1) $\nabla \cdot \vec{E}=0$
$\oint_{\Sigma} \vec{E} \bullet d \vec{A}=0$
2) $\nabla \bullet \vec{B}=0$
$\oint_{\Sigma} \vec{B} \bullet d \vec{A}=0$
3) $\nabla x \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
$\oint_{c} \vec{E} \bullet d \vec{l}=-\frac{d}{d t} \int_{\Sigma} \vec{B} \bullet d \vec{A}$
4) $\nabla x \vec{B}=\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}$
$\oint_{C} \vec{B} \bullet d \vec{l}=\varepsilon_{0} \mu_{0} \frac{d}{d t} \int_{\Sigma} \vec{E} \bullet d \vec{A}$

EM Wave Equation in Materials

No Magnetic Monopoles
E field

$$
\begin{aligned}
& \nabla x(\nabla x \vec{E})=\nabla(\nabla \bullet \vec{E})-\nabla^{2}(\vec{E})=\nabla\left(\rho_{e} / \varepsilon_{0}\right)-\nabla^{2}(\vec{E}) \\
& =\nabla x\left(-\frac{\partial \vec{B}}{\partial t}\right)=-\frac{\partial(\nabla x \vec{B})}{\partial t}=-\frac{\partial\left(\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}\right)}{\partial t}=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}-\mu_{0} \frac{\partial \vec{J}}{\partial t} \\
& \rightarrow \nabla^{2}(\vec{E})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}=\mu_{0} \frac{\partial \vec{J}}{\partial t}+\nabla\left(\rho_{e} / \varepsilon_{0}\right)
\end{aligned}
$$

B field

$$
\begin{aligned}
& \nabla x(\nabla x \vec{B})=\nabla(\nabla \bullet \vec{B})-\nabla^{2}(\vec{B})=\nabla(0)-\nabla^{2}(\vec{B}) \\
& =\nabla x\left(\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J}\right)=\varepsilon_{0} \mu_{0} \frac{\partial(\nabla x \vec{E})}{\partial t}+\mu_{0} \nabla x \vec{J}=-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}+\mu_{0} \nabla x \vec{J} \\
& \rightarrow \nabla^{2}(\vec{B})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=-\mu_{0} \nabla x \vec{J}
\end{aligned}
$$

Wave Equations in Materials

No free charges or currents
Homogeneous Wave Equation

$$
\nabla^{2} \vec{E}-\mu \varepsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}}=0 \quad \nabla^{2} \vec{B}-\mu \varepsilon \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0
$$

$$
\mu=\mu_{m} \mu_{0}
$$

$\mu_{0}=$ free space permeability
$\mu_{m}=\kappa_{m}=$ magnetic material relative permeability
$\varepsilon=\varepsilon_{r} \varepsilon_{0}$
$\varepsilon_{0}=$ free space permittivity
$\varepsilon_{r}=\kappa_{e}=$ dielectric material relative permittivity
Wave Speed $v=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}} \sqrt{\mu_{m} \varepsilon_{r}}}=\frac{c}{\sqrt{\mu_{m} \varepsilon_{r}}}=\frac{c}{n}$
$n=\sqrt{\mu_{m} \varepsilon_{r}}=$ "effective index of refraction"

Solutions for Wave Equation

Any well behaved function is a solution of the homogeneous wave equation i it has the following form: $\mathrm{f}(\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})$ where $\overrightarrow{\mathrm{k}}$ is called the "wave vector" and ω is the angular frequency $\omega=2 \pi f \& k=2 \pi / \lambda$
The homogeneous wave function is linear so a sum of solutions is a solution.
We can thus form basis sets of solutions
Any well behaved function can be written as a Fourier series
We can use sin/co functions as a basis set by taking a discrete or continuous
Fourier transform of $\mathrm{f}(\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})$
We can write a general solution set consisting of the sum of the following:
$\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\overrightarrow{\mathrm{E}} \sin (\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})$
$\overrightarrow{\mathrm{B}}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\overrightarrow{\mathrm{B}}_{0} \sin (\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})$
Use $\sin (\vec{k} \bullet \vec{x}-\omega t)$ for simplicity
$\overrightarrow{\mathrm{E}}_{0}, \overrightarrow{\mathrm{~B}}_{0}$ are amplitude vectors
No free charges solution:

$$
\begin{aligned}
& \text { 1) } \nabla \bullet \vec{E}=0 \rightarrow \vec{k} \bullet \vec{E}=\vec{k} \bullet \overrightarrow{\mathrm{E}}_{0}=0 \rightarrow \vec{k} \perp \overrightarrow{\mathrm{E}}_{0} \\
& \text { 2) } \nabla \bullet \vec{B}=0 \rightarrow \vec{k} \bullet \vec{B}=\vec{k} \bullet \overrightarrow{\mathrm{~B}}_{0}=0 \rightarrow \vec{k} \perp \overrightarrow{\mathrm{~B}}_{0}
\end{aligned}
$$

$\nabla^{2}(\vec{E})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{E}}{\partial t_{-}^{2}}=0 \rightarrow k^{2}=\varepsilon_{0} \mu_{0} \omega^{2}=\omega^{2} / c^{2}$ (this is called a dispersion relation where $\omega=\mathrm{ck}$)
$\nabla^{2}(\vec{B})-\varepsilon_{0} \mu_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}=0 \rightarrow$ same
3) $\nabla x \vec{E}=-\frac{\partial \vec{B}}{\partial t} \rightarrow \vec{k} x \overrightarrow{\mathrm{E}}_{0}=\omega \overrightarrow{\mathrm{B}}_{0} \rightarrow \overrightarrow{\mathrm{~B}}_{0}=\frac{k}{\omega}\left(\hat{k} x \overrightarrow{\mathrm{E}}_{0}\right) \rightarrow \overrightarrow{\mathrm{B}}_{0} \perp \overrightarrow{\mathrm{E}}_{0} \& E_{0}=c B_{0} \rightarrow 1$ Tesla $=3 x 10^{8}$ Volt $/ \mathrm{m}$
4) $\nabla x \vec{B}=\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t} \rightarrow \vec{k} x \overrightarrow{\mathrm{~B}}_{0}=\varepsilon_{0} \mu_{0} \omega \overrightarrow{\mathrm{E}}_{0} \rightarrow \overrightarrow{\mathrm{E}}_{0}=\varepsilon_{0} \mu_{0} \frac{\omega}{k}\left(\hat{k} x \overrightarrow{\mathrm{~B}}_{0}\right)=\frac{\omega}{c^{2} k}\left(\hat{k} x \overrightarrow{\mathrm{~B}}_{0}\right) \rightarrow \overrightarrow{\mathrm{E}}_{0} \perp \overrightarrow{\mathrm{~B}}_{0}$
$\rightarrow \vec{k}, \overrightarrow{\mathrm{E}}_{0}, \overrightarrow{\mathrm{~B}}_{0}$ are all perpendicular to each other with $\vec{k} \propto \overrightarrow{\mathrm{E}}_{0} x \overrightarrow{\mathrm{~B}}_{0}, \mathrm{E}$ and B always in phase

Poynting Vector

It Points in the Direction of Energy Flow

Assume Free Space ($\mathrm{J}=0$ - no free currents)
Some math:
$\nabla \bullet(\vec{E} \times \vec{B})=\vec{B} \bullet(\nabla \times \vec{E})-\vec{E} \bullet(\nabla x \vec{B})=\vec{B} \bullet\left(-\frac{\partial \vec{B}}{\partial t}\right)-\vec{E} \bullet\left(\varepsilon_{0} \mu_{0} \frac{\partial \vec{E}}{\partial t}\right)=-\mu_{0} \frac{\partial}{\partial t}\left[\frac{B^{2}}{2 \mu_{0}}+\varepsilon_{0} \frac{E^{2}}{2}\right]$
Add some Physics:
$\rho_{M}=$ Magnetic field energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)=\frac{B^{2}}{2 \mu_{0}}$
$\rho_{E}=$ Electric field energy density $\left(\mathrm{J} / \mathrm{m}^{3}\right)=\varepsilon_{0} \frac{E^{2}}{2}$
Define the Poynting vector $\vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\frac{1}{\mu_{0}}(\vec{E}(\overrightarrow{\mathrm{x}}, \mathrm{t}) x \vec{B}(\overrightarrow{\mathrm{x}}, \mathrm{t}))$ (units are watts $/ \mathrm{m}^{2}$)
$\vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t}) \propto \hat{k} \rightarrow \hat{k}$ points along wave propagation $\rightarrow \vec{S}$ is along direction of energy flow
$|\vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})|=\frac{1}{\mu_{0}}|(\vec{E}(\overrightarrow{\mathrm{x}}, \mathrm{t}) x \vec{B}(\overrightarrow{\mathrm{x}}, \mathrm{t}))|=\frac{1}{\mu_{0}}|\vec{E}(\overrightarrow{\mathrm{x}}, \mathrm{t})||\vec{B}(\overrightarrow{\mathrm{x}}, \mathrm{t})|=\frac{1}{c \mu_{0}} \overrightarrow{\mathrm{E}}_{0}{ }^{2} \sin ^{2}(\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})$
Continuity equation (use divergence theorem):
$\oint_{\Sigma} \vec{S} \bullet d \vec{A}=\int_{V} \nabla \bullet \vec{S} d V=-\mu_{0} \frac{\partial}{\partial t} \int_{V}\left(\rho_{M}+\rho_{E}\right) d V \rightarrow \nabla \bullet \vec{S}+\partial \rho / \partial t=0$
$\rho=\rho_{M}+\rho_{E}$

Time Averaged Poynting Vector

$|\vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})|=\frac{1}{\mu_{0}}|(\vec{E}(\overrightarrow{\mathrm{x}}, \mathrm{t}) x \vec{B}(\overrightarrow{\mathrm{x}}, \mathrm{t}))|=\frac{1}{\mu_{0}}|\vec{E}(\overrightarrow{\mathrm{x}}, \mathrm{t})||\vec{B}(\overrightarrow{\mathrm{x}}, \mathrm{t})|=\frac{1}{c \mu_{0}} \overrightarrow{\mathrm{E}}_{0}{ }^{2} \sin ^{2}(\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})$
$|\vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})|$ oscillates at twice the frequency of the EM wave
For example for visible light at $\lambda=0.55$ microns (peak of human vision)
$\rightarrow f=545 \mathrm{THz} \rightarrow$ Poynting vector oscillates at 1090 THz
This is too fast for virtually normal detectors
Time average of Poyting vector is useful in practical measurements
$\left.\langle | \vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})\left\rangle=\left\langle\frac{1}{c \mu_{0}} \overrightarrow{\mathrm{E}}_{0}^{2} \sin ^{2}(\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})\right\rangle=\frac{1}{c \mu_{0}}\right| \overrightarrow{\mathrm{E}}_{0}^{2}\left|\left\langle\sin ^{2}(\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})\right\rangle=\frac{1}{2 c \mu_{0}}\right| \overrightarrow{\mathrm{E}}_{0}{ }^{2} \right\rvert\,$
$\left\langle\sin ^{2}(\overrightarrow{\mathrm{k}} \bullet \overrightarrow{\mathrm{x}} \pm \omega \mathrm{t})\right\rangle=1 / 2$
$\rightarrow\left|\overrightarrow{\mathrm{E}}_{0}^{2}\right|=2 c \mu_{0}\langle | \vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})| \rangle \rightarrow\left|\overrightarrow{\mathrm{E}}_{0}\right|=\sqrt{2 c \mu_{0}\langle | \vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})| \rangle}=27.5 \sqrt{| | \vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})| \rangle}$
Example :Solar insolation (flux from sun)

1) At surface of Earth $\langle | \vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})\left\rangle \sim 1000 \mathrm{w} / \mathrm{m}^{2} \rightarrow\right| \overrightarrow{\mathrm{E}}_{0} \mid \sim 868$ volts $/ m$
2) At top of atmosphere $\langle | \vec{S}(\overrightarrow{\mathrm{x}}, \mathrm{t})\left\rangle \sim 1350 \mathrm{w} / \mathrm{m}^{2} \rightarrow\right| \overrightarrow{\mathrm{E}}_{0} \mid \sim 1010$ volts $/ \mathrm{m}$

Wave Equations

$$
\nabla^{2} \mathbf{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} \quad \nabla^{2} \mathbf{B}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}}
$$

This is similar to a scalar wave equation where c is the speed of the wave

$$
\begin{aligned}
\nabla^{2} f & =\frac{1}{c_{0}^{2}} \frac{\partial^{2} f}{\partial t^{2}} \\
c_{0} & =\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}
\end{aligned}
$$

Solutions to the Wave Equations

The following is a solution for ANY well behaved function f K is called the wave vector - here it is a unit vector that points in the direction of wave propagation

$$
v=f \lambda
$$

$$
\mathbf{E}=\mathbf{E}_{0} f\left(\hat{\mathbf{k}} \cdot \mathbf{x}-c_{0} t\right)
$$

$$
\begin{array}{ll}
\nabla \cdot \mathbf{E}=\hat{\mathbf{k}} \cdot \mathbf{E}_{0} f^{\prime}\left(\hat{\mathbf{k}} \cdot \mathbf{x}-c_{0} t\right)=0 & \mathbf{E} \cdot \hat{\mathbf{k}}=0 \\
\nabla \times \mathbf{E}=\hat{\mathbf{k}} \times \mathbf{E}_{0} f^{\prime}\left(\hat{\mathbf{k}} \cdot \mathbf{x}-c_{0} t\right)=-\frac{\partial \mathbf{B}}{\partial t} & \mathbf{B}=\frac{1}{c_{0}} \hat{\mathbf{k}} \times \mathbf{E}
\end{array}
$$

E, B and K form a mutual orthogonal system

$E, B(M)$ and wavelength

$$
\begin{aligned}
& \mathrm{K}=2 \pi / \lambda \\
& v=f \lambda
\end{aligned}
$$

Light wave

$\lambda=$ wave length
$\mathrm{E}=$ amplitude of electric field
$\mathrm{M}=$ amplitude of magnetic field

E, B and K - Right handed coordinate system E and B are "in phase"

Properties of electromagnetic waves

- Maxwell's equations imply that in an electromagnetic wave, both the electric and magnetic fields are perpendicular to the direction of propagation of the wave, and to each other.
- In an electromagnetic wave, there is a definite ratio between the magnitudes of the electric and magnetic fields: $E=c B$.
- Unlike mechanical waves, electromagnetic waves require no medium. In fact, they travel in vacuum with a definite and unchanging speed:
- Inserting the numerical values of these constants, we obtain
$c=3.00 \times 108 \mathrm{~m} / \mathrm{s}$.

Properties of electromagnetic waves

- The direction of propagation of an electromagnetic wave is the direction of the vector product of the electric and magnetic fields.

Right-hand rule for an electromagnetic wave:
(1) Point the thumb of your right hand in the wave's direction of propagation.
(2) Imagine rotating the $\overrightarrow{\boldsymbol{E}}$-field vector 90° in the sense your fingers curl. That is the direction of the \boldsymbol{B} field.

Direction of propagation
$=$ direction of $\overrightarrow{\boldsymbol{E}} \times \overrightarrow{\boldsymbol{B}}$.

The Poyting Vector Units are Flux (w/m²)

The Poynting Vector

- The Poynting vector depends on E and B

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}, \text { so } \quad S=\frac{1}{\mu_{0}} E B \sin \theta
$$

- Its direction is the direction of propagation
- This is time dependent
- Its magnitude varies in time

- Its magnitude reaches a maximum at the same instant as \mathbf{E} and \mathbf{B}

$$
\theta=90^{\circ}, \text { so } \quad S=\frac{1}{\mu_{0}} E B
$$

Energy in electromagnetic waves

- Electromagnetic waves such as those we have described are traveling waves that transport energy from one region to another.
- The British physicist John Poynting introduced the Poynting vector $\overrightarrow{\boldsymbol{S}}$
- The magnitude of the Poynting vector is the power per unit area in the wave, and it points in the direction of propagation.

At time $d t$, the volume between the stationary plane and the wave front contains an amount of electromagnetic energy $d U=u A c d t$.

Energy in electromagnetic waves

- The magnitude of the average value of is called the intensity. The SI unit of intensity is $1 \mathrm{~W} / \mathrm{m}^{2}$.
- These rooftop solar panels are tilted to be face-on to the sun so that the panels can absorb the maximum amount of wave energy.
Intensity of a sinusoidal electromagnetic wave in vacuum
Electric-field amplitude Magnetic-field amplitude Electric constant

$$
\begin{aligned}
& I=S_{\mathrm{av}}=\frac{E_{\max } B_{\max }}{2 \mu_{0}}=\frac{E_{\max }^{2}}{2 \mu_{0} c}=\frac{1}{2} \sqrt{\frac{\epsilon_{0}}{\mu_{0}} E_{\max }^{2}=\frac{1}{2} \epsilon_{0} c E_{\max }^{2}} \\
& \begin{array}{l}
\text { Magnitude of average } \\
\text { Poynting vector }
\end{array} \begin{array}{l}
\text { Magnetic } \\
\text { constant }
\end{array}
\end{aligned}
$$

A simple plane electromagnetic wave

- To begin our study of electromagnetic waves, imagine that all space is divided into two regions by a plane perpendicular to the x-axis.
- At every point to the left of this plane there are uniform electric field magnetic fields as shown.
- The boundary plane, which we call the wave front, moves in the $+x$-direction with a constant speed c.

Gauss's laws and the simple plane wave

- Shown is a Gaussian surface, a rectangular box, through which the simple plane wave is traveling.
- The box encloses no electric charge.
- In order to satisfy Maxwell's first and second equations, the electric and magnetic fields must be perpendicular to the direction of propagation; that is, the wave must be transverse.

The electric field is the same on the top and bottom sides of the Gaussian surface, so the total electric flux through the surface is zero.

The magnetic field is the same on the left and right sides of the Gaussian surface, so the total magnetic flux through the surface is zero.

Faraday's law and the simple plane wave

- The simple plane wave must satisfy Faraday's law in a vacuum.
- In a time $d t$, the magnetic flux through the rectangle in the $x y$-plane increases by an amount $d \Phi_{B}$.
- This increase equals the flux through the
 $d \Phi_{B}=B a c d t$.
- Thus $d \Phi_{B} / d t=B a c$.
- This and Faradav's law imolv:

Ampere's law and the simple plane wave

- The simple plane wave must satisfy Ampere's law in a vacuum.
- In a time $d t$, the electric flux through the rectangle in the $x z$-plane increases by an amount $d \Phi_{E}$.
- This increase equals the flux through the shaded rectangle with area ac $d t$;
 that is, $d \Phi_{E}=$ Eac $d t$.
- Thus $d \Phi_{E} / d t=$ Eac. This implies $\mathrm{E}=\mathrm{Bc}$:

Electromagnetic wave in vacuum:

$$
B=\epsilon_{0} \mu_{0} c E
$$

Speed of light

Sinusoidal electromagnetic waves

- Electromagnetic waves produced by an oscillating point charge are an example of sinusoidal waves that are not plane waves.
- But if we restrict our observations to a relatively small region of space at a sufficiently great distance from the source, even these waves are well approximated by plane waves.

Fields of a sinusoidal wave

- We can describe electromagnetic waves by means of wave functions:
Sinusoidal
electromagnetic
plane wave,
propagating in
$+x$-direction:

- The wave travels to the right with speed $c=$ ω / k.
- The amplitudes must be related by:

```
Sinusoidal
electromagnetic wave
in vacuum:
```

Electric-field amplitude .Magnetic-field amplitude

$$
E_{\max }=c B_{\max } \quad \text { Speed of light }
$$

Electromagnetic waves in matter

- Electromagnetic waves can travel in certain types of matter, such as air, water, or glass.
- When electromagnetic waves travel in nonconducting materials-that is, dielectrics-the speed v of the waves depends on the dielectric constant of the material.

- The ratio of the speed c in vacuum to the speed v in a material is known in optics as the index of refraction n of the material.

$$
\frac{c}{v}=n=\sqrt{K K_{\mathrm{m}}} \cong \sqrt{K}
$$

Electromagnetic radiation pressure

- Electromagnetic waves carry momentum and can therefore exert radiation pressure on a surface:

$$
\begin{array}{ll}
p_{\mathrm{rad}}=\frac{S_{\mathrm{av}}}{c}=\frac{I}{c} & \text { (radiation pressure, wave totally absorbed) } \\
p_{\mathrm{rad}}=\frac{2 S_{\mathrm{av}}}{c}=\frac{2 I}{c} & \text { (radiation pressure, wave totally reflected) }
\end{array}
$$

- At surface of Earth - $\mathrm{S}_{\mathrm{AV}} \sim 1000 \mathrm{w} / \mathrm{m}^{2}$
- Above atmosphere - $\mathrm{S}_{\mathrm{AV}} \sim 1361 \mathrm{w} / \mathrm{m}^{2}$ Sun sensor
- For example, if the solar panels on an earth-orbiting satellite are perpendicular to the sunlight, and the radiation is completely absorbed, the average radiation pressure is $4.7 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}$.
(to keep panels

Solar Irradiance at TOA

Ca-II triplet 11545, 11707, 11767
H alpha: 15237
Mg-I doublet: $\quad 19292,19332$
H beta: 20571
Fel: 22812
H gamma: 23039
Balmer Series, $\mathbf{n}=\mathbf{2 , 3 , 4 , 5 . . .}$
$27427^{*}\left(1--4 / \mathrm{h}^{\wedge} 2\right)$
$=27430{ }^{*}(5 / 9,3 / 4,21 / 25,8 / 9)$
$=15237,20570,23039,24380$
H delta: 24380
Fel: 24723
Ca-II doublet: $\quad 25202,25426$

Solar Radiation Spectrum

Standing electromagnetic waves

- Electromagnetic waves can be reflected by a conductor or dielectric, which can lead to standing waves.
- As time elapses, the pattern does not move along the x-axis; instead, at every point the electric and magnetic field vectors simply oscillate.

Standing waves in a cavity

- A typical microwave oven sets up a standing electromagnetic wave with $\lambda=12.2 \mathrm{~cm}$, a wavelength that is strongly absorbed by
 the water in food.
- Because the wave has nodes spaced $\lambda / 2=6.1 \mathrm{~cm}$ apart, the food must be rotated while cooking.
- Otherwise, the portion that lies at a nodewhere the electric-field amplitude is zero-will remain cold.

Visible light - Red-Green-Blue

Visible light

- Visible light is the segment of the electromagnetic spectrum that we can see.
- Visible light extends from the violet end (400 nm) to the red end (700 nm).

Wavelengths of

TABLE 32.1 Visible Light

$380-450 \mathrm{~nm}$	Violet
$450-495 \mathrm{~nm}$	Blue
$495-570 \mathrm{~nm}$	Green
$570-590 \mathrm{~nm}$	Yellow
$590-620 \mathrm{~nm}$	Orange
$620-750 \mathrm{~nm}$	Red

Eye Response to Colors and BW

Rods (Scotopic - BW - night vision ~ 120 million) and Cones (Photopic - Color - ~ 6 million)

 Modern Electronic Focal Plane Arrays Now Exceed Human Resolution Central fovea (retina) is primarily populated by cones - NOTE Bind spot

Three Types of Cones for Color Vision

There are three types of cones in the human eye.

Long wavelength cones with a peak detection of greenish-yellow. Medium wavelength cones with a peak detection of green. Short wavelength cones that detect principally blue and violet colors.

Retina Distribution of Rods and Cones

(A)

(C)

(B)

3.4 THE SPATIAL MOSAIC OF THE HUMAN CONES. Cross sections of the human retina at the level of the inner segments showing (A) cones in the fovea, and (B) cones in the periphery. Note the size difference (scale bar $=10 \mu \mathrm{~m}$), and that, as the separation between cones grows, the rod receptors fill in the spaces. (C) Cone density plotted as a function of distance from the center of the fovea for seven human retinas; cone density decreases with distance from the fovea. Source: Curcio et al., 1990.

At the left is a generalized conception of the important structural features of a vertebrare phororeceptor cell. At the right are shown the differences berween the structure of rod (left) and cone (right) outer segments. These diagrams are from Young (1970) and Young (1971).

2.4 Drawings of rod and cone cells from a variety of animals. a, leopard frog red rod; b, leopard frog green rod; c, leopard frog cone; d, goldfish cone; e, goldfish rod; ; , bluegill twin cone; \mathbf{g}, snapping turtle cone; h , snapping turtle rod; i , western painted turtle double cone; j, human rod; k, human cone; I, human foveal cone

Ultraviolet Light and Vision

Our colors looks quite different

- Many insects and birds can see ultraviolet wavelengths that humans cannot.
- As an example, the left-hand photo shows how black-eyed
 Susans look to us.
- The right-hand photo (in false color), taken with an ultraviolet-sensitive camera, shows how these same flowers appear to the bees that pollinate them.
- Note the prominent central spot that is invisible to humans.

Infrared Vision

Santa Barbara is the IR Capital (Industrial Base) of the US

IR Imaging is very important

Remote sensing for weather, crop health, industrial, medical, astronomy Thermal IR ($8-12$ microns) is Common Now (Microbolometers) Night Vision Systems in Cars for example

Spectral bands	Range $[\mu \mathrm{m}]$	Detector materials*	Applications
NIR	$0.74-1$	SiO_{2}	Telecommunications
SWIR	$1-3$	InGaAs, PbS	Remote sensing
MWIR	$3-5$	InSb, PbSe, PtSi, HgCdTe	High temperature inspection (indoors, scientific research)
LWIR	$8-14$	HgCdTe	Ambient temperature (outdoor, industrial inspection)

VLWIR 14-1000 \quad - Spectrometry, astronomy

[^0]
Thermal IR Imaging (8-12 microns)

Green PIt Viper

Impedance of the Vacuum

Our modern view of the vacuum is that it is a sea of all things at negative energy. Thus it is NOT NOTHING.

It has an impedance

$$
\begin{aligned}
& Z_{0} \stackrel{\text { def }}{=} \mu_{0} c_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}=\frac{1}{\varepsilon_{0} c_{0}} \\
& \varepsilon_{0} \stackrel{\text { def }}{=} \frac{1}{\mu_{0} c_{0}^{2}} \approx 8.854187817 \ldots \times 10^{-12} \\
& Z_{0} \approx 376.73031346177 \ldots \Omega
\end{aligned}
$$

Electromagnetic Energy Density and Flux and Quanta

$$
\begin{aligned}
& u_{e}=\frac{\epsilon_{0}}{2} E^{2} \\
& u_{m}=\frac{1}{2 \mu_{0}} B^{2} \\
& \mathbf{S}=\frac{1}{\mu} \mathbf{E} \times \mathbf{B}, \\
& E=h f
\end{aligned}
$$

$$
h=6.62606896(33) \times 10^{-34} \mathrm{~J} \mathrm{~s}=4.13566733(10) \times 10^{-15} \mathrm{eV} \mathrm{~s}
$$

Blackbody Radiation - Planck Function

Blackbody = Body that Absorbs all Radiation The Universe is a Nearly Perfect Blackbody

Dispersion in materials - polarization depends on frequency

[^0]: *Si: silicon; SiO_{2} : silica; In: Indium; Ga: gallium; As: arsenic; Pb : lead; S : sulfur; Sb : antimony; Se: selenium; Pt: platinum; Hg : mercury; Cd : cadmium; Te : tellurium.

