
Electromagnetic Waves

Visible light, radio waves, cell 
communications, UV tanning, HDTV – these 

are all examples of EM waves
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Maxwell's Equations of Electromagnetism
No magnetic Monopoles

Changing B field induces E field and Changing E field induces B field
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Maxwell's Equations of Electromagnetism
Allow existence of magnetic monopoles
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Units – not just MKS
What about charge? – Farad’s – Henry’s
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2( ) ( ) ( ) for any well behaved vector field F( , )

Well behave means no singularities and differentiable in space and time

There is no Physics here - just mathematics
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EM Wave Equation in General – Allow Mag Mono



Maxwell’s Equation in Vacuum
No charges – No mag monopoles
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EM Wave Equation in Materials
No Magnetic Monopoles
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Wave Equations in Materials
No free charges or currents

Homogeneous Wave Equation
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Solutions for Wave Equation
Any well behaved function is a solution of the homogeneous wave equation i it has the following form:

f(k x t) where k is called the "wave vector" and  is the angular frequency = 2 & 2 /
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Poynting Vector
It Points in the Direction of Energy Flow
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Time Averaged Poynting Vector
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Wave Equations

This is similar to a scalar wave equation where c is the speed of the wave



Solutions to the Wave Equations

The following is a solution for ANY well behaved function f
K is called the wave vector – here it is a unit vector that points 
in the direction of wave propagation

E, B and K form a mutual orthogonal system



E, B (M) and wavelength
K = 2π/λ



E, B and K – Right handed coordinate system
E and B are “in phase”



Properties of electromagnetic waves
• Maxwell’s equations imply that in an electromagnetic wave, 

both the electric and magnetic fields are perpendicular to 
the direction of propagation of the wave, and to each other. 

• In an electromagnetic wave, there is a definite ratio 
between the magnitudes of the electric and magnetic 
fields: E = cB.

• Unlike mechanical waves, electromagnetic waves require 
no medium. In fact, they travel in vacuum with a definite 
and unchanging speed:

• Inserting the numerical values of these constants, we 
obtain 
c = 3.00 × 108 m/s.



Properties of electromagnetic waves

• The direction of 
propagation of an 
electromagnetic 
wave is the direction 
of the vector 
product of the 
electric and 
magnetic fields.



The Poyting Vector
Units are Flux (w/m2)



Energy in electromagnetic waves
• Electromagnetic waves such as 

those we have described are 
traveling waves that transport 
energy from one region to 
another.

• The British physicist John 
Poynting introduced the 
Poynting vector

• The magnitude of the Poynting
vector is the power per unit 
area in the wave, and it points 
in the direction of propagation.

© 2016 Pearson Education, Ltd.



Energy in electromagnetic waves

• The magnitude of the average 
value of is called the 
intensity.  The SI unit of 
intensity is 1 W/m2.

• These rooftop solar panels 
are tilted to be face-on to the 
sun so that the panels can 
absorb the maximum amount of wave energy.

© 2016 Pearson Education, Ltd.



A simple plane electromagnetic wave
• To begin our study of 

electromagnetic waves, 
imagine that all space is 
divided into two regions by a 
plane perpendicular to the 
x-axis.

• At every point to the left of 
this plane there are uniform 
electric field magnetic fields 
as shown.

• The boundary plane, which 
we call the wave front, 
moves in the +x-direction 
with a constant speed c. 

© 2016 Pearson Education, Ltd.



Gauss’s laws and the simple plane wave
• Shown is a Gaussian 

surface, a rectangular box, 
through which the simple 
plane wave is traveling. 

• The box encloses no 
electric charge.

• In order to satisfy 
Maxwell’s first and second 
equations, the electric and 
magnetic fields must be 
perpendicular to the 
direction of propagation; 
that is, the wave must be 
transverse.



Faraday’s law and the simple plane wave

• The simple plane wave must satisfy
Faraday’s law in a vacuum. 

• In a time dt, the magnetic flux through 
the rectangle in the xy-plane increases 
by an amount dΦB.

• This increase equals the flux through the 
shaded rectangle with area ac dt; that is, 
dΦB = Bac dt.

• Thus dΦB/dt = Bac.

• This and Faraday’s law imply:



Ampere’s law and the simple plane wave

• The simple plane wave must satisfy 
Ampere’s law in a vacuum. 

• In a time dt, the electric flux through 
the rectangle in the xz-plane increases 
by an amount dΦE.

• This increase equals the flux through 
the shaded rectangle with area ac dt; 
that is, dΦE = Eac dt.

• Thus dΦE/dt = Eac. This implies E=Bc:



Sinusoidal electromagnetic waves
• Electromagnetic waves 

produced by an 
oscillating point charge 
are an example of 
sinusoidal waves that are 
not plane waves.

• But if we restrict our 
observations to a 
relatively small region of 
space at a sufficiently 
great distance from the 
source, even these waves 
are well approximated by 
plane waves.



Fields of a sinusoidal wave

• We can describe electromagnetic waves by 
means of wave functions:

• The wave travels to the right with speed c = 
ω/k.

• The amplitudes must be related by:
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Electromagnetic waves in matter
• Electromagnetic waves can travel in certain types of matter, 

such as air, water, or glass. 
• When electromagnetic waves travel in nonconducting

materials—that is, dielectrics—the speed v of the waves 
depends on the dielectric constant of the material.

• The ratio of the speed c in vacuum to the speed v in a 
material is known in optics as the index of refraction n of 
the material.
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Electromagnetic radiation pressure
• Electromagnetic waves carry momentum and can 

therefore exert radiation pressure on a surface:

• At surface of Earth - SAV ~1000 w/m2

• Above atmosphere - SAV ~1361w/m2

• For example, if the solar panels 
on an earth-orbiting satellite 
are perpendicular to the 
sunlight, and the radiation is
completely absorbed, the 
average radiation pressure 
is 4.7 × 10−6 N/m2. 



http://upload.wikimedia.org/wikipedia/commons/4/47/Solar_irradiance_spectrum_1992.gif


http://upload.wikimedia.org/wikipedia/commons/4/4c/Solar_Spectrum.png


Standing electromagnetic waves
• Electromagnetic waves can be reflected by a conductor or 

dielectric, which can lead to standing waves.

• As time elapses, the pattern does not move along the x-axis; 
instead, at every point the electric and magnetic field vectors 
simply oscillate.



Standing waves in a cavity

• A typical microwave oven 
sets up a standing 
electromagnetic wave with 
λ = 12.2 cm, a wavelength 
that is strongly absorbed by 
the water in food. 

• Because the wave has nodes spaced λ/2 = 6.1 cm 
apart, the food must be rotated while cooking. 

• Otherwise, the portion that lies at a node—
where the 
electric-field amplitude is zero—will remain cold.



Visible light – Red-Green-Blue

http://upload.wikimedia.org/wikipedia/commons/d/df/Visible_EM_modes.png


Visible light
• Visible light is the segment of the 

electromagnetic spectrum that we can see.  

• Visible light extends from the violet end (400 
nm) to the red end (700 nm).
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Eye Response to Colors and BW
Rods (Scotopic - BW – night vision ~ 120 million ) and Cones (Photopic – Color - ~ 6 million)

Modern Electronic Focal Plane Arrays Now Exceed Human Resolution 
Central fovea (retina) is primarily populated by cones – NOTE Bind spot



Three Types of Cones for Color Vision



Retina Distribution of Rods and Cones



Ultraviolet Light and Vision
Our colors looks quite different

• Many insects and birds can 
see ultraviolet wavelengths 
that humans cannot. 

• As an example, the left-hand 
photo shows how black-eyed 
Susans look to us. 

• The right-hand photo (in false color), taken with an 
ultraviolet-sensitive camera, shows how these same 
flowers appear to the bees that pollinate them. 

• Note the prominent central spot that is invisible to 
humans.
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Infrared Vision
Santa Barbara is the IR Capital (Industrial Base)  of the US



IR Imaging is very important
Remote sensing for weather, crop health, industrial, medical, astronomy

Thermal IR (8-12 microns) is Common Now (Microbolometers)

Night Vision Systems in Cars for example



Thermal IR Imaging (8-12 microns)



Impedance of the Vacuum
Our modern view of the vacuum is that it is  

a sea of all things at negative energy. 
Thus it is NOT NOTHING.

It has an impedance



Electromagnetic Energy Density and 
Flux and Quanta



Blackbody Radiation – Planck Function
Blackbody = Body that Absorbs all Radiation
The Universe is a Nearly Perfect Blackbody



Dispersion in materials – polarization 
depends on frequency


