Homework 3: Phys 141

May 28, 2019

Problem 3.6

The optical path difference is $d=2 l(n-1)$. When a fringe changes from bright to dark, the optical path difference changes by $\frac{\lambda}{2}$. The number of fringes, N , is given by

$$
N=\frac{2 \Delta d}{\lambda}=\frac{4 l(n-1)}{\lambda}=\frac{4 * 10 * 10^{-2} *(0.0003)}{590 * 10^{-9}}=203
$$

Problem 3.9

The transverse coherence width is given by

$$
l_{t}=\frac{1.22 \lambda}{\theta_{s}}
$$

Which, for $\lambda=500 \mathrm{~nm}$ and $\theta=0.5 * \frac{p i}{180}$ is

$$
l_{t}=0.084 \mathrm{~nm}
$$

Problem 3.10

Again, we start from

$$
l_{t}=\frac{1.22 \lambda}{\theta_{s}}
$$

Now, $\theta_{s} \approx \frac{s}{r}=10^{-3}$ and $\lambda=590 \mathrm{~nm}$, so

$$
l_{t}=0.72 \mathrm{~nm}
$$

Problem 4.1

$$
\begin{gathered}
T_{\max }=\frac{T^{2}}{(1-R)^{2}}=\frac{0.05^{2}}{(1-0.9)^{2}}=0.25 \\
T_{\min }=\frac{T^{2}}{(1+R)^{2}}=\frac{0.05^{2}}{(1+0.9)^{2}}=7 \times 10^{-4} \\
\mathfrak{F}=\pi \frac{\sqrt{R}}{1-R}=\pi \frac{0.9}{0.1}=29.8 \\
F
\end{gathered}=\frac{4 R}{(1-R)^{2}}=\frac{4(0.9)}{0.1^{2}}=360 \$
$$

Problem 4.5

For a single layer,

$$
M=\left[\begin{array}{cc}
\cos (k l) & -\frac{i}{n} \sin (k l) \\
-i n \sin (k l) & \cos (k l)
\end{array}\right] \equiv\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]
$$

now,

$$
t=\frac{2 n_{0}}{A n_{0} B n_{T} n_{0}+C+D n_{T}}=\frac{2}{A+B+C+D}
$$

since $n_{0}=n_{T}=1$.

$$
t=\frac{2}{2 \cos (k l)-i \sin (k l)\left(n+\frac{1}{n}\right)}
$$

$T=t t^{*}=\frac{2}{2 \cos (k l)-i \sin (k l)\left(n+\frac{1}{n}\right)} \frac{2}{2 \cos (k l)+i \sin (k l)\left(n+\frac{1}{n}\right)}=\frac{4}{4 \cos ^{2}(k l)+\sin ^{2}(k l)\left(n+\frac{1}{n}\right)^{2}}$
now, $k l=\frac{2 \pi n d}{\lambda}$. If $\lambda=\frac{2 \pi n d}{N}$, then $T=1$, which is the maxima.

Problem 4.7

$$
R=\frac{\left(n_{T}-n_{1}^{2}\right)^{2}}{\left(n_{T}+n_{1}^{2}\right)^{2}}=0.008=0.8 \%
$$

Problem 4.9

We start with the boundary conditions that

$$
\begin{gathered}
\text { 1) } E_{0}+E_{0}^{\prime}=E_{1}+E_{1}^{\prime} \\
\text { 2) } n_{0}\left(E_{0}-E_{0}^{\prime}\right)=n_{1}\left(E_{1}-E_{1}^{\prime}\right) \\
\text { 3) } E_{1} e^{i k l}+E_{1}^{\prime} e^{-i k l}=E_{T} \\
\text { 4) } E_{1} n_{1} e^{i k l}-n_{1} E_{1}^{\prime} e^{-i k l}=n_{T} E_{T}
\end{gathered}
$$

Equations 3 and 4 can be combined to give the equations

$$
\begin{aligned}
& \text { 5) } E_{1}=\frac{n_{1}+n_{T}}{2 n_{1}} E_{T} e^{-i k l} \\
& \text { 6) } E_{1}^{\prime}=\frac{n_{1}-n_{T}}{2 n_{1}} E_{T} e^{i k l}
\end{aligned}
$$

Equations 5 and 6 can be substituted into equation 1 to give

$$
7) 1+\frac{E_{0}^{\prime}}{E_{0}}=\frac{E_{T}}{E_{0}}\left(\cos (k l)-i \frac{n_{T}}{n_{1}} \sin (k l)\right)
$$

Equations 5 and 6 can also be substituted into equations 2 to give

$$
\text { 8) } n_{0}\left(1-\frac{E_{0}^{\prime}}{E_{0}}\right)=\frac{E_{T}}{E_{0}}\left(n_{T} \cos (k l)-i n_{1} \sin (k l)\right)
$$

Lastly, equations 7 and 8 can be combined to give

$$
\begin{gathered}
{\left[\begin{array}{c}
1 \\
n_{0}
\end{array}\right]+\frac{E_{0}^{\prime}}{E_{0}}\left[\begin{array}{c}
1 \\
-n_{0}
\end{array}\right]=\left[\begin{array}{cc}
\cos (k l) & -\frac{i}{n_{1}} \sin (k l) \\
-n_{1} i \sin (k l) & \cos (k l)
\end{array}\right]\left[\begin{array}{c}
1 \\
n_{T}
\end{array}\right] \frac{E_{T}}{E_{0}}} \\
\Rightarrow\left[\begin{array}{c}
1 \\
n_{0}
\end{array}\right]+r\left[\begin{array}{c}
1 \\
-n_{0}
\end{array}\right]=M\left[\begin{array}{c}
1 \\
n_{T}
\end{array}\right] t
\end{gathered}
$$

