
Homework 4: Phys 141

June 6, 2019

Problem 5.1
The criterion for Fresnel versus Fraunhofer diffraction is given by
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d′
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d

)
δ2 � λ

In this problem, λ = 600nm, d = 10m and δ = 1mm.
in part a)

d′ = 1cm
, giving
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δ2 = 1

2
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)
(0.001)2 = 5x10−5m

Which is not much smaller than 6x10−7m. So Fresnel diffraction applies.
in part b)

d′ = 2m
, giving

1
2

( 1
d′

+ 1
d

)
δ2 = 1

2
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2

)
(0.001)2 = 3x10−7m

Which is smaller than 6x10−7m. So Fraunhofer diffraction applies.
Problem 5.2
We start from β = 1

2kb sin θ, where b = 0.5mm and k = 2π
λ

= 9.9x106.
Now,

tan(θ) = x

d

where x is the distance from the central maximum to some point on the screen.
So,

x = d tan(θ) = d tan
(

arcsin
(2β
kb

))
The first minimum occurs at β = π, so
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xmin1 = d tan(θ) = d tan
(

arcsin
(2π
kb

))
= 0.633mm

The second maximum occurs at β = 1.5π, giving

xmin1 = d tan(θ) = d tan
(

arcsin
(3π
kb

))
= 0.905mm

Problem 5.5
The intensity on the screen is given by the equation

I(β) = I0

(sin(β)
β

)2

Setting the derivative with respect to β equal to zero,

dI(β)
dβ

= I0
2θ sin(β) cos(β)− 2 sin2(β)

β3 = 0

⇒ 2 sin(β)(β cos(β)− sin(β)) = 0

⇒ β cos(β) = sin(β)

⇒ tan(β) = β

The easiest way to find the roots of this transcendental equation is using some root
finding algorithm.

We can rewrite the above equation as

β = arctan(β) = arctan(β + nπ)
For large β, we can expand to

β = (n+ 1
2)π + ...

Problem 5.7
Say that the angular resolution of the starts is θ. Then,

tan
(
θ

2

)
= dstartostar

10ly

⇒ θ = 2.11x10−6

Now,

θ = 1.22λ
R

R = 1.22λ
θ

= 0.29m
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Problem 5.12
For a double slit aperture

I(β, γ) = I0

(sin(β)
β

)2
cos2(γ)

Where β = 1
2kb sin(θ) and γ = 1

2kh sin(θ). So, β = b
h
γ.

For the central diffraction envelope, β = [−π, π]. This gives γ a range of γ = [−h
b
π, h

b
π].

We are looking for values of γ where I(β, γ) is at a maximum with respect to γ, meaning
where cos2(γ) = 1. Now, cos2(γ) = 1 at γ = πn.

Over the range γ = [0, h
b
π], γ = nπ h

b
+ 1 times.

By symmetry, we get a total of

n = 2
(
h

b
+ 1

)
Problem 5.17
Starting from the equation

Up = − ik4π

∫ U0e
ik(r+r′)−iωt

rr′
[cos(n, r) + 1]dA

Lets use the coordinates set up in Figure 5.20. First, we see that r =
√
R2 + h2 and

r′ =
√
R2 + h′2. Writing our integral in cylindrical coordinates (ρ, φ), we get

Up = − ik4πe
−iωtU0

∫ 2π

0

∫ R

0

eik(r+r′)
√
ρ2 + h2

√
ρ2 + h′2

[cos(n, r) + 1]ρdρdφ

Now, we can write r + r′ = h+ h′ + R2

2L

Up = − ik4πe
ik(h+h′)−iωtU0

∫ 2π

0

∫ R

0

e
ikρ2
2R

√
ρ2 + h2

√
ρ2 + h′2

[cos(n, r) + 1]ρdρdφ

By cylindrical symmetry of the problem (assuming we are working on axis), the integral
over φ is trivial

Up = −ik2 e
ik(h+h′)−iωtU0

∫ R

0

e
ikρ2
2R

√
ρ2 + h2

√
ρ2 + h′2

[cos(n, r) + 1]ρdρ

using the substitution ξ = φ2, we find

Up = −ik4 e
ik(h+h′)−iωtU0

∫ R2

0

e
ikξ
2R

√
ξ + h2

√
ξ + h′2

[cos(n, r) + 1]dξ

Up = −ik4 e
ik(h+h′)−iωtU0

∫ R2

0

e
iπξ
λR

√
ξ + h2

√
ξ + h′2

[cos(n, r) + 1]dξ

This integral is still difficult to do, but can be evaluated by considering phasors. As we
integrate, the exponential term inside the integral causes the the phase of the integral to
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Figure 1:

change. The term inside the integral will change sign at each multiple of ξ = λR. The other
part of the integral cos(n,r)+1√

ξ+h2
√
ξ+h′2

decreases as ξ increases.
This means that our integral is essentially a spiral in the complex plane. This is shown

in figure 1.
If we integrate from 0 to the first Fresnel zone ξ = λR, we remain on the outside of the

spiral. If we integrate over all Fresnel zones, the integral continues to spiral inward. The
integral over all Fresnel zones is half of the integral over the first Fresnel zone.

Problem 5.19
Part a)
Starting with

Up = U0

(1 + i)2

[
C(u) + iS(u)

]∣∣∣∣u2

u1

[
C(v) + iS(v)

]∣∣∣∣v2

v1

So, for a thin slit

Up = U0

(1 + i)2

[
C(v) + iS(v)

]∣∣∣∣v2

v1
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Figure 2:

Let’s take the slit to be centered at zero, and ∆v = 3, so that

Up = U0

(1 + i)2

[
C(v)+iS(v)

]∣∣∣∣x+1.5

x−1.5
= U0

(1 + i)2

[
C(x+1.5)−C(x−1.5)+iS(x+1.5)−iS(x−1.5)

]

Now, I = |Up|2, giving

I = |Up|2 = U2
0

(1 + i)2(1− i)2

[
C(x+ 1.5)− C(x− 1.5) + iS(x+ 1.5)− iS(x− 1.5)

]
∗

[
C(x+ 1.5)− C(x− 1.5)− iS(x+ 1.5) + iS(x− 1.5)

]

I = U0

4

[
(C(x+ 1.5)− C(x− 1.5))2 + (S(x+ 1.5)− S(x− 1.5))2

]
Putting this function into Mathematica, we get the following plot
Part b)
From Babinet’s principle, we know that a complimentary aperture will produce an iden-

tical diffraction pattern. So the diffraction pattern will be the same.
Part c)
We start from the equation

5



v2 − v1 = (y2 − y1)
√

2
λL

⇒ L = 2(y2 − y1)2

λ(v2 − v1)2 =
(1
h

+ 1
h′

)−1

If the light rays are coming from infinity, then h′ →∞, and L→ h

h = 2(y2 − y1)2

λ(v2 − v1)2 = 2(1 ∗ 10−3)2

(500 ∗ 10−9)(3)2 = 4
9m
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