
Aperture Photometry

In aperture photometry, concentric circular apertures are used to compute
the sky subtracted flux of a star.  The inner circle is made large enough to
cover almost all of the flux from the star and the outer one is large enough
to obtain a good sky value but not  too large.  We assume the image to be
analyzed is already flat fielded, though for some applications, this is not
critical.

In general, we want to sum up the contributions of all the pixels where
significant light from the star occurs.  Since there are other sources of
signal, such as CCD dark current, atmospheric emission, etc., we must
subtract these so that the result we get is only due to star.  We call this
corrected value the sky subtracted value.

Heuristically we let: 
g() = pixel value in A/D units from all sources, star, background, dark
        current, etc.
gb() = pixel value in A/D units if NO star is present.  This is the
 background value and is assumed to have the same integration
time.

Here we have written g() and gb() to denote that in general these values
are wavelength dependent and will vary as the filter is changed.

The sky subtracted signal f() (star only) is then
where the sum is over all pixels where starlight is present.  We can get
gb() by either taking a separate exposure with no star present, but of
equal time or as is more common, by using pixels near to where the star is
located to calculate the background level.
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f  g  gb
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To analyze the problem in detail, we introduce the following notation:

We assume: ri and ro are measured from the centroided star position.
NIA =  # pixels in inner aperture
NOA =  # pixels in outer aperture
G(j,k) =  image array - already flat fielded
R = A/D counts per e-

N(j,k) =  G(j,k)/R = pixel value in e-

The sky subtracted stellar flux n in electrons is:

Where the sum is over all pixels where starlight is present.  In terms of the
image arrays, we have:

Error Analysis

We can compute the error in the sky subtracted flux f as follows
(assuming uncorrelated errors)

Here N is the uncertainty in a given pixel measurement.
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ri   = inner aperture radius
ro  = outer aperture radius
IA  = inner aperture
OA= outer aperture

n  1
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Nj, k=Avg background level per pixel in e



Where:

N =  total number of electrons produced in a pixel
NR = CCD readout noise in e-

m = magnitude of star determined
n = sky subtracted stellar flux in e-

m-mo = -2.5 log(n/no)
mo, no -  known object in background  

    no, mo can also refer to sky background per pixel
m - magnitude associated with f()
m = -2.5 log(n) + 2.5 log (no) + mo

m = -2.5 log(n) + c   : c=constant
m = -2.5 log(e) ln(n) + c
m =  2.5 |(n/n)| log (e) ~ 1.086 n/n)

Note, we have assumed n, N(j,k), NR are given in number of e- since we
are using (N)1/2 statistics.
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Standard Fluxes and Stars

In order to be able to compare the magnitudes and intensities of stars, we
need a standard of measurement so that different measurements using
various telescopes, CCDs etc. will yield the same results.  For this, we
need a standard measure of flux (i.e. photons/cm2-s- or ergs/cm2-s- for
example).  In addition, we would like a standard set of stars to calibrate
our instruments on.  In the section entitled "Finding the Absolute Flux of a
Star" we will look in detail at the question of measurements of flux.  For
now, it is sufficient to assume the detector (CCD) and electronics are
linear.  Thus the relationship between the intensity of a star we measure in
A/D units as f() and the actual flux of the star () in photons/cm2-s- for
example is just

 f() = c() F()
where c() is a "constant" that depends on the specifics of out telescope,
filter, CCD, A/D etc.  In general, this "constant" depends on the
wavelength being measured for a variety of reasons (filter response, CCD
quantum efficiency, etc.).

The magnitude scale is defined so that the difference in magnitudes is
related to the log (base 10) of the ratio of fluxes as

 m1-m2 = -2.5 log( 1(1)/ 2(2)) 
where m1, m2 and 1(1) 2(2) refer to the magnitudes and fluxes of two
stars.  We have to be careful here though to specify the wavelength
accepted by our instrument.

If we assume both measurements are done at a fixed wavelength  , then
one can write this in terms of the measured intensity f1(), f2() as:
Since c() is the same in both cases.  Here the assumption of fixed

wavelength was critical.
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m1 m2  2.5 log
f1/c
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f1
f2



Here we have implicitly assumed that f() is the sky subtracted signal in
the language of the previous section so that the background, sky, dark
current, etc., has been subtracted.

So far we can only get magnitude differences.  What we need are stars of
known flux and magnitude at given wavelengths.  These are standard
stars.  If mo is the known magnitude of a standard star and fo() is the
measured intensity in A/D units, then the magnitude m1 of another star
whose intensity f1() is measured at the same wavelength is:

m1 = mo - 2.5 log[f1()/fo()]
In this way, we calibrate the measured magnitudes.

Dealing with the atmosphere

Our goal is to calculate the apparent magnitude of a star as it would appear
above the earth's atmosphere and to take into account the band pass and
efficiencies of the whole system (filters, telescope, detector, atmosphere)
so that we can compare our results to those measured by others or so they
can compare their results to ours.  We will use the following parameters:

f() = intensity measured (in general it will depend of wavelength)
f*() = intensity that would be measured outside the earth's atmosphere

 (i.e. corrected for atmospheric absorption)
m() = magnitude measured (in general it will depend on wavelength)
m*() = magnitude that would be measured outside of the earth's

 atmosphere.  This is what we are trying to solve for.
 (i.e. corrected for atmospheric absorption)

(,) = opacity of atmosphere.  Depends on wavelength and zenith angle
 of object.  In general (,) is complicated as it varies with time
 and depends on moisture and dust in the air, altitude of site, etc.  
 In practice, it must be measured at least once per night and often
 times for each object.
 Formally (,) = ln (f*()/f())

o() = opacity at zenith (looking straight up) =0 here.
We define K() = 2.5 log (e)o() = extinction coefficient ~ 1.086o().
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We can model the earth's atmosphere as a horizontally stratified slab so
that we can relate  and o() as follows:

Where X() is called the "air mass" and for angles  <= 60 degrees is well
approximated as X) = sec ()

The "air mass" is the ratio of the atmosphere column density at the
observation zenith angle  to the column density at =0 (often referred to
sea level for =0).  The term is loosely used in the literature unfortunately.

The relationship between the two magnitudes m() and m*() and the
corresponding fluxes f() and f*() is as follows:

m*() - m() = -2.5 log [f*()/f()]
Since log [f*()/f()] = log (e) ln[f*()/f()] = log (e)

Therefore m*() m() - 2.5 log (e)
m*() m() - 2.5 log (e)o()x()
m*() m() - K()x()

                       m*()  m() - K()sec()  <= 60 degrees

Hence once we measure m() we can get m*() if we know or can
calculate K().  The problem now becomes one of finding (measuring)
K().

Note that we have really only determined the difference m*()-m() and
unless we use a calibration (known) star to set the "reference level", then
m() and hence m*() will be uncalibrated.

In Table I, we give the "air mass" and refraction of an object versus zenith
angle .  The "air mass" includes effects due to the earth's curvature and is
slightly different from sec() for angles greater than 60 degrees.  The
refraction angle assumes observations at sea level.  Objects are always
lower than they appear.
If we define:
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,  oX 
o
cos  o sec

m*()and m()



Zo = Zenith angle (angle from zenith (vertical)) of star if no 
    atmosphere were present

Z = Actual zenith angle of star

then at sea level:
R = Zo-Z in arc seconds
R = 58.3 tan Z - 0.067 tan3Z

A plot of m() vs x() measured over time as a star rises or sets should be

a straight line if the atmosphere is stable over this time.  See Figure 1 as
an example.  Since m() = m*() +K()cos(), the slope of the line would
be K() and the zero intercept would be m*(), which is the extra
atmospheric (above the atmosphere - no extinction), magnitude we are
trying to measure.   In figure 1, K()=0.2019 mag/airmass and
m*()=13.02 mag.

Note that, in theory, if me measure m()  for the same star at two air
masses, we can then determine m*() and K().  Conversely, if we know
m*() (from standard stars) we can determine K().  Note that we can
measure K(), but as stated before, we really only measure magnitude
differences (i.e. m*()- m() )  unless we calibrate our magnitude scale
using a standard star.  Where the line drawn is the best fit to the data.  The
line is of the form y=ax+b.

Chapter 6:  Photometry

7

1592.90470

1011.99560

701.55350

491.30440

341.15430

211.06420

101.01510

010

R
(arc sec)

Air
Mass x


(Deg)

Table 1:
Sea Level Air Mass and
Refraction versus Zenith
Angle



The best fit line is Y=0.2019X + 13.021, where Y is the measured
magnitude and X is air mass.  Therefore, the extinction coefficient is
0.2019 mag / airmass and the true (zero atmosphere) magnitude is 13.021.

In Table II, we list the extinction coefficient and transmission verus
wavelength using a "standard" sea level atmosphere assuming the zenith
angle is zero (=0).  By definition, in this case the air mass x(=0) = 1.
The extinction coefficient unit of measure is "magnitudes".  Figure 2
gives a plot of K() versus  from 0.3 microns (Ultraviolet) to 2 microns
(near infrared).
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Figure 1:  Measured
Magnitude versus Air
Mass for a Single Star.
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Atmospheric Extinction.  Air Mass=1 (Sea Level)

Wavelength (microns)

K (mag)

Table II

Figure 2

98.70.0142

98.50.0161.8

98.30.0181.6

97.90.0231.4

97.20.031.2

96.20.0421

95.30.0520.9

93.90.0670.8

91.10.10.7

880.1370.65

840.1850.6

820.2120.55

790.250.5

730.340.45

630.50.4

580.60.38

510.740.36

430.910.34

27.31.410.32

1.14.890.3

Transmission (%)
(100e-(,0))

K() (mag)(microns)



If we measure the magnitude of a star for two different air masses, we can
solve for m*() and K() as follows:

let m1(), X1(1) be measured at angle 1

let m2(), X2(2) be measured at angle 2

as before:

m1() = m*() + K()X1(1)
m2() = m*() + K()X2(2)

Then 

The primary disadvantage to this method is that it assumes the atmosphere
is stable over the time it takes to star to go from 1 to 2.  Usually it is
desirable to have at least a 30 degree difference between 1 and 2 to give
reasonable accuracy for m*() and K().  In theory, the measured K()
could now be used for other stars to find m*() as long as the atmosphere
is stable.

Another way of determining K() is to measure two or more known stars
of the same spectral class at significantly different air masses using the
same filter(s).  Since in this case, we know m*() for each star, we have:

m1() = m1
*() + K()X1(1)

m2() = m2
*() + K()X2(2)

Since we specified that the same filter is used for each observation:
By using stars of the same spectral class, we minimize any mismatch

problems our filters may have.  Also by writing K() as involving only the
differences in magnitudes m1()-m2() eliminates the need to calibrate the
measured magnitudes m1(), m2().
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K 
m1m2m1

m2


X11X22

m  m1X22m2X11
X22X11 , K  m2m1

X22X11

Finding
m*() and

K()



Finding the absolute flux of a star
To find the absolute flux of a star, we need to know the response of all of
the elements of our system including telescope, filters, detector, sky
background and atmospheric opacity.  We define these responsivities
quantitatively as follows:

f() = measured star intensity in A/D units
F*() = actual star flux above atmosphere in photons/cm2-sec-
F() = star flux at telescope aperture = *()e-

 = optical efficiency - including telescope, filter, glass, etc.
(fraction of phtons entering telescope aperture that make it to the

detector)
QE() = quantum efficiency of CCD in e-/photon
A = effective aperture area of telescope in cm2

FB() = emitted sky background photons/cm2-steradian-
R = CCD response = A/D counts per e-

Ro = A/D no signal value (offset)
 = atmospheric opacity. Depends on  and zenith angle of 

   observation ( here)ln [ *() ()]
iDC = CCD dark current in e-/s
DC = integration time in seconds.
 =  solid angle per CCD pixel in steradians
 = optical bandpass of system (filter) in 

Define A=A()QE()

We can rewrite F*() as follows in terms of measured quantities.
Define fB()=FB()()A + iDC)R+ Ro

Then:

So:
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f  [FAQE  FBAQE]R  iDCR  Ro

 Fe,  FBAQE  iDCR  Ro

f  Fe,AR  fB

Absolute
Flux



Notice that fB() is precisely the value that the same pixel would have if

there were no star present (i.e. if we were only measuring the background
and dark current.  We can easily get fB() by making another measurement
of the same integration time of a blank field (same zenith angle
approximately) or by using a nearby pixel value which should be
equivalent (assuming flat fielding was done first).

Notice that A is only a function of system parameters and does not
depend on the atmosphere.  In theory, we need only determine A once
for each filter used and it should be consistent thereafter.  This assumes
that the CCD is stable from one observation to the next.

Since a star will usually deposit photons in more that one pixel we should
sum over all pixels that have significant star light.  We then write F*()
as:

In the section on aperture photometry, we calculated the total number of
electrons n produced in the CCD associated with the star as:

So we can rewrite F*() as:
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F  e,

AR f  fB

n  1
R f  fB

F  e,

An

F  e,ffB
A



Historically, photometry has been done in a number of different color
bands.  Of particular interest to CCD based photometry are the UBVRI
color bands.  The rough transmission bands for each are given below in
Table III in microns. U=Ultraviolet, B=Blue, V=Visible, R=Red,
I=Infrared.

Figure 3 shows the approximate transmission bands.  Transmission
normalization is arbitrary.  
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Color Bands

Table III

0.150.8I

0.10.65R

0.090.55V

0.10.44B

0.070.36U


Center

Band

Wavelength (microns)

Transmission

U B
V R I

Figure 3:  
Approximate
UBVRI
bandpass



By measuring objects in several different bands, the spectral class and
temperature can be determined.  To aid in this determination a "color
index" is often used.  A "color index" is simply a difference between
magnitudes measured in different bands and hence is just the log of a flux
ratio in these bands.  For example, the color index B-V is just the
magnitude measured in the B band minus that in the V band.  We assume
for the following that all magnitudes have been corrected for absorption in
the earth's atmosphere.  Similarly for U-B, R-I, etc.  Knowing the
spectrum of an object, we can compute the color indices and vice versa.
These are summarized in Table IV for stars of varying spectral
classification.  Note that, by definition, the color indices U-B and B-V are
identically zero for an A0 spectral class star.  The color indices B-V and
U-B versus stellar spectral temperature are plotted in Figures 4 and 5.
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Table IV:  Spectral Class,
Temperature and Color
Indicies

 2.00 2,660M8
1.19  1.61 3,120M5

 1.56 3,230M4

 1.55 3,360M3

 1.52 3,500M2

 1.48 3,680M1
1.26  1.41 3,920M0

 1.30 4,160K7
1.03  1.15 4,410K5

 0.98 4,590K3

 0.92 4,780K2
0.47  0.81 5,240K0

 0.72 5,490G8
0.20  0.68 5,610G5

 0.64 5,780G2
0.11  0.60 5,920G0

 0.53 6,200F8

 0.50 6,320F7

 0.47 6,450F6
0.00  0.45 6,540F5

 0.38 6,930F2
0.06 0.33 7,240F0

 0.20 8,190A7
0.11  0.15 8,620A5

 0.09 9,260A3

 0.06 9,730A2

 0.0310,200A1
 0.00 0.0010,800A0
-0.19-0.0612,400B9
-0.3-0.0913,400B8

-0.42-0.1214,500B7
-0.49-0.1415,400B6
-0.56-0.1616,400B5
-0.71-0.218,800B3
-0.86-0.2422,100B2
-0.93-0.2624,200B1
-1.08-0.330,000B0
-1.12-0.3131,900O9
-1.14-0.3237,000O7
-1.15-0.3238,000O5

U-BB-VT
(Kelvin)

Class
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Graphs From
Table IV :

Figure 4: 
B-V Color
Index vs.
Spectral
Temperature
(Kelvin)

Figure 5:
U-B Color
Index vs.
Spectral
Temperature
(Kelvin)

Temperature (K)

Color Index (B-V)

Temperature (K)

Color Index (U-B)
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6316.31-2

2512.51-1

58.51.59-0.5

20.21.2-0.2

109.61.1-0.1

204.71.05-0.05

501.91.02-0.02

1000.91.01-0.01

Infinity01 0.00

S/N% DifferenceF1/F2m1-m2

Table V

d ln
dm Fm  dFm

dm
1

Fm  0.4 ln10  0.921

dFm
Fm 

1
Fm/Fm 

1
S/N  0.921m

S/N 1.1
m where m  1

S/N Ratio



It might seem like the color index differences are small, but remember that
these are logarithmic.  Since the CCD is highly linear, it is instructive to
view the color index as a flux ratio.  Since, by definition m1-m2 (or mB-mV

for example) = -2.5 log (F1/F2).  F1/F2 = 10-(m1-m2)/2.5 = 10-0.4(m1-m2)

The relation of Signal to Noise Ratio (S/N) required to get a given
Magnitude Uncertainty m can be computed as follows:

F(m) = F(0)10-0.4m

ln F(m) =ln{F(0)}-0.4m ln(10)

The column marked "S/N" in Table V is the signal to noise required to
measure a given magnitude difference to 1 sigma significance.  Generally,
a 3 to 5 sigma measurement is needed so you should multiply this column
by 3 to 5.

Figure 6 on the next page gives a plot of S/N versus m.

Because of the rapidly increasing atmosphere absorption at shorter
wavelengths and because of the finite width of the UBVRI filter bands we
need some knowledge of the spectrum we are observing to determining
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the atmospheric extinction correction.  This is particularly of concern for
U and
B bands.  Since we generally only have the flux in the bands UBVRI (i.e.
only 5 numbers) and not a full spectrum, the following approximate
corrections are useful.

K(U) = Extinction Coefficient in U band
K(B) = Extinction Coefficient in V band
K(V) = Extinction Coefficient in R band

K(U) = 0.65 - 0.01(B-V) magnitude / airmass
K(B) = 0.34 - 0.03 (B-V) magnitude / airmass
K(V) = 0.20 magnitude / airmass
K(R) = 0.14 magnitude / airmass
K(I)  = 0.07 magnitude / airmass

Here "air mass" refers to the equivalent sea level air mass.

Air Mass vs Altitude

Since the effective air mass varies with the altitude of the observing site, it
is useful to understand this relationship.  In the following we assume an
atmospheric profile based on the "US Standard" atmosphere.  Ultimately
your particular atmosphere will depend on a number of other variables,
such as local weather conditions.

The variation with pressure P (in mmHg) and temperature T (in oC) of the
air mass X() is:

Where Xo() is the airmass at sea level and an angle  .

 Let r = X(P,T,)/Xo() = ratio of airmass to airmass at sea level
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Air Mass and
Site Altitude

XP, T,  P Xo
7600.9620.0038T

then r  P
7600.9620.0038T



(This is also the same relationship to be used for atmospheric refraction vs
altitude)
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Table VI

Figure 7:  
Standard ratio
of vertical air
mass versus
site altitude



Table VI gives the relation between site altitude (in feet) mean
temperature, pressure and r.

Figure 7 plots r versus site altitude.
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Height versus temperature and pressure for the "US Standard
Atmosphere".  r is the ratio of the vertical air mass at a given altitude to
that at sea level.
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