Water and Other Volatiles

Ben Ruby Lee Park Jesse Brinkenhoff

Lunar H₂0 History

From the 20th century into the 21st

Timeline / Water on the Moon 20th Century The Apollo Program 1961 - Caltech Researchers Kenneth Watson, Bruce C. Murray and Harrison Brown Soviet Program / Soviet probe 1976 Luna 24 Clementine probe / U.S. Military × NASA 1994 Bistatic Radar Experiment Lunar Prospector : NASA 1998 neutron spectrometer and 1999 deliberate crash into shoemaker crater Cassini - Huygens : NASA × ESA × Italian 1999 passed by the Moon Space Adency

21st Century Deep Impact : NASA 2005 Clementine Lunar prospector > inconclusive Kaguya : AKA 'SELENE' Japanese 2007 Gamma Ray Spectrometry. Chang'e 1 : People's Republic of China 2007 : detailed photographs of polar areas (water ice location) Chandrayaan - 1: India - ISRO 2008 : Moon Impact Probe - Shackleton Crater @ Lunar South Pole LRO / LCROSS 2009: Cabeus crater impact Ejecta research

Where can it be found?

And How?

Focus: India / ISRO / Chandrayaan-1

In the EXOSPHERE

On the SURFACE

CHACE (CHandra's Altitudinal Composition Explorer) on **MIP** (Moon Impact Probe)

(an <u>imaging spectrometer</u>)

Synthetic Aperture radars SUB-SURFACE

Who has taken charge?

★ India with Chandrayaan-2

China with Chang'e missions

Potential H₂O Uses

★ Domestic Uses for Lunar Base

★ Rocket fuel

★ Potential source for drinking water

\star Provide breathable air

Sustainability

★ According to Jim Green, NASA's chief scientist, current estimates suggest somewhere between one hundred million to two hundred million tons of water ice exist in the moon's dark craters

★ No accurate measurements to the amount of lunar ice, just estimates

[★] Further examinations are yet to be conducted on quality of lunar ice

Unknown dust levels from asteroid
& comet impacts

 Also contains metals, Sulfur oxides, Ammonia, rock, glass, and other possible organic materials

★ Realistic and safe separation method is not yet developed

Methods of Extraction

- electrolysis

Methods of Extraction

• Microwave

 Beaming microwaves on lunar permafrost could vaporize 98 percent of water ice, and capture 99 percent of the extracted water in gas form

Possible Obstacles

• Differences in atmospheric conditions could lead to excess volatile escape during sampling and collecting phase of lunar mission.

Schematic depiction of the experimental apparatus for measuring transport properties in a regolith packed bed

Possible Obstacles

• Difficult to determine the precise microwave frequency for Water extraction

Band designator	Frequency	Wavelength in free space
	GHz	cm
L	1–2	30-15
S	2-4	15–7.5
С	4-8	7.5-3.8
Х	8-12	3.8-2.5
Ku	12-18	2.5-1.7
К	18-27	1.7–1.1
Ka	27-40	1.1-0.75
V	40-75	0.75-0.40
W	75-110	0.40-0.27

Other Volatiles

Helium-3 2 protons, 1 neutron

• Helium 3

 isotope could provide safer nuclear energy in a fusion reactor, since it is not radioactive and would not produce dangerous waste products.

Conclusion

• Artemis 3 Mission 2024

 NASA has grander plans for future Artemis missions in the late 2020s—"a sustained lunar presence,"

Presence of lunar water and other volatiles will have potentially profound political/societal implications in the near-future.