CCD and CMOS Imaging Devices for Large Ground Based Telescopes

Slides from Veljko Radeka – Brookhaven National Lab

"Large Telescopes"

- Primary Mirror dia.=D_m, Area= A
- *f*-number *f* /#
- Focal Plane Array dia.= D_f
- Field of View $\Omega \alpha D_f / D_m$
- Etendue
- Plate Scale arcsec/µm
- Survey telescopeDeLarge (~8m)Very la~ 1/1.2~ 1/Large (~60cm)Mediu~3-4 degrees~20~330m²deg²0.2
 - <u>Deep probe</u> Very large (~30m) ~ 1/30-40 Medium (~20cm) ~20 arc min

<u>Science Drivers</u>: Wide area surveys for dark energy studies

ΑΟ

- FPA Requirements:
- Increase Area
- Increase QE in near IR
- Reduce PSF (diffusion and pixel size)
- Increase readout speed

e.g., Pan STARRS, LSST

Growth of mosaics

Illustration of focal plane sizes, from Luppino/Burke 'Moores' law

Focal plane size doubles every 2.5 years

From: Burke, Jorden, Vu, SDW Taormina 2005

Ground-based mosaics-3

SAO MMT Megacam

4x9 E2v CCD42-90 2048x4608 13.5 micron pixels 200kHz

From: Loose, Hoffman, Suntharalingam, SDW, Taormina 2005

Solid State Device

- A Solid State Device is a photosensitive device that converts light signals into digital signals
 - An incoming photon kicks an electron in the conduction band
 - □ The read-out system gives a digital signal
- Typically, the three main types in astronomical imaging are
 - CCD: Charge-Coupled Device
 - CMOS: Complementary Metal-Oxide Semiconductor
 - □ IRFPA: Infrared Focal Plane Array
- Basic Operating Principle
- Performance of Solid State Detectors
- Observation with Solid State Detectors

Big Bear Solar Observatory

CCD Basic Operating Principle – Bucket Brigade

- □ Step 0 Light into Detector
- **Step 1 Charge Generation**
- **Step 2 Charge Collection**
- **Step 3 Charges Transfer**
- Step 4 Charge-to-Voltage Conversion
- **Step 5 Digitization**

Big Bear Solar Observatory

Charge Generation in Capacitive Pixel

For an electron to be excited from valence band to conduction band

$$h\nu \geq E_g$$

 $h = 6.63 \times 10^{-34}$ Joule s (Planck constant)

 $\Box = c / \Box$ (Frequency of light)

 E_{g} : electron-volts (Energy gap of material) Long wavelength cut-off $\lambda \leq \frac{1.238}{E_{e}(eV)} = \lambda_{cut-off}(\mu m)$

Silicon: $E_q = 1.12 \text{ eV}$ $\lambda_{cut-off} = 1.1 \text{ micron}$

Band Gap Energy

- Minimum energy to elevate an electron into conduction is the "band gap energy".
- semiconductors have a narrow gap between the valence and conduction bands.

Semiconductors allow for photo-sensitive circuits (photon absorption adds energy to electron).

Big Bear Solar Observatory

CCD readout

Schematic of typical 3-phase operation. Charge is held by voltage potential until end of integration, then shifted, one pixel at a time, row by row to output. Large CCDs move charge through thousands of pixels (c.f., CTE, multiple amplifiers)

CCD Properties

Scotopic vision is low light conditions (rod cells), Photopic is daytime (cone cells)

Internal QE vs temperature and silicon thickness, for <u>1000nm</u> wavelength.

8

Monochromatic PSF rms vs. thickness and electric field

PSF vs T and E for electrons

- •Includes effects of diffusion and divergence.
- •Velocity saturation effects included •Focal plane position adjusted at each thickness and wavelength for minimum overall PSF.

resistivity 10 k Ω -cm, p-type, overdepleted

Optimal focal plane position varies with wavelength due to divergence of f/1.2 beam

Partial vs Full Depletion

Conventional CCDs 15-20 µm thick on 20-100 ohmcm silicon cannot be fully depleted with 15-20 volts. PSF (rms) ~ thickness of <u>undepleted region (≥~6-7 µm)</u> Depletion Full depletion essential for ٠ layer minimal charge spreading, **PSF (rms) < ~ 4 μm** Undepleted Methods to ensure full (neutral) depletion: High-resistivity substrate >5 kohm cm Illustration from: **Barry Burke** – Bias on p+ (n+) back-

surface (30-50 volts on 100

μm)

Can the predicted small diffusion be achieved?

CCDs developed at LL for PanSTARRS. B. Burke, J. Tonry, et al. results:

Calculation incl.velocity saturation effects predicts ~2.5 μ m rms at 40 volts for electrons (p-substrate).

For LBNL/SNAP CCD results see S.Holland, this conference

Window Technology

A highly doped layer at the window required to terminate the field and leave a thin conductive layer at the surface.

Highly doped layer thickness <~10 nm to allow uv light into the sensitive (depleted) region.

Technologies under development (must be compatible with antireflective coating):

- •Ion implantation followed by laser annealing – low T process (LL)
- •Doped polysilicon deposition high T process (LBNL), <u>presentation by S. Holland</u>
- •Chemisorption charging very good for uv response, but no conductive layer (ITL)

 In a CCD, the signal charge is transferred *serially* by a noiseless process (very high CTE) to *a single sense node,* where it is converted to a signal voltage.

•Pixels are read out *after* the integration is completed.

•In a PIN CMOS sensor, the charge to voltage conversion takes place *in parallel at the sense node of each pixel*.

•The signal voltage can be read out "up the ramp" *during* integration.

- Photoresponse non-uniformity <1%
- •Dark current in inversion mode ~0.001 e/pixel sec
- •Correlated double sampling each clock cycle
- More complex clock amplitude and phasing requirements
- High power dissipation with segmented readout
- Independent window biasing→design constraints

•Blooming:

PIN-CMOS

- •Independent optimization of the PIN and CMOS design and processing
- •Electronic shutter by reset transistors
- Blooming control
- •Large dynamic range by readout "up the ramp"; addressable guider readout
- Lower power dissipation, low voltage for CMOS
- Fixed pattern noise
- •pixel-to-pixel (stable) gain differences due to amplifier per pixel
- capacitive (deterministic) crosstalk
 to adjacent pixels
- •CDS over longer time intervals

Indium Bump Bonding

Teledyne RSC - H2RG (2Kx2K, 18 µm pixel) HyViSI Measured quantum efficiency (courtesy Reinhold Dorn, ESO).

This HyViSI array has a detector layer that is 75 microns thick and a single layer anti-reflection coating of SiO2 that is 1200Å thick.

Readout Noise in CCDs

Results From: Burke, Jorden, Vu, SDW Taormina 2005

Correlated Double Sampling (CDS) and kTC Noise "new" kTC building up $\propto (kTC)^{1/2} \left[1 - \exp(-2t/CR_{OFF})\right]^{1/2}$ Signal "old" kTC (from reset) Sample 1 of "old" Reset switch Sample 2 kTC *decaying* with opens: Sample 1 time constant $C_d R_{OFF}$ R_{OFF} / r_{ON} [] 10⁶ -10¹¹ $\overline{r_{low''}} = r_{ON}$ Example: $C \sim 20 \text{ fF} \rightarrow kTC \sim 40 \text{ e rms!}$ **Active Pixel** $r_{ON} \sim 10^3 \text{ ohms}$ $r_{ON} C \sim 20 \text{ ps}$ С $\overline{R_{"high"}} = \overline{R}_{OFF}$ (or CCD) $R_{OFF} \sim 10^{13} \text{ ohms}$ $R_{OFF} C = 0.2 \text{ s}$ 21

CCD Observations

- CCDs are used in astronomy for three major applications:
 - Imaging
 - Photometry
 - Spectroscopy
- Used in optical and outside optical bands (e.g., x-ray, UV, EUV)

CCD Image Types – Bias Frame

		Canena 3,23	X
File	Tools	Expose Options	
Vote birs Its			
bles.tts : 19 Oct 2000 15:07:57 05 C 2-2.92			
1.1.1.1			dita.
	1.535		
	e chere		
	1260		
Constanting of the			
	1000		
205350 2010/00/00			
Harrist		and a second of the second	
Distances of			
A Second and		and the second	
the second		Contraction of the second s	
Section of	1000	这个时间,这些时间,他们的时间,你们的时候,你们	100
			121
COLOR DATE			
and the second second			编辑
Entering		in a state of a state of the second state of the state of the	
and the second			100
and Degra.		and the second	10
and the second		and the second	
The second second	State of the other		102028

• BIAS - calibration

 A bias (or zero) is a zero second exposure used to measure the "no signal" noise level of the detector.

Note the two bad columns in this CCD and cosmic rays

CCD Image Types – Flat Field

• FLAT FIELD - calib.

- A flat field image is used to determine the relative QE of each pixel in the array
- Flat field images are obtained from dome screens, the sky, or quartz lamps projected in to a spectrograph

Basic CCD data reduction

- Minimal set of images: bias, flat, and object
- Darks needed if dark current an issue
- All frames include overscan
- Additional steps needed for specific CCDs and specific observations – instrument manuals should provide details
- Basic reduction
 - (Object Mean Zero) / Mean Flat
- LOOK AT YOUR DATA Does it make sense?

CCD Image Types

Object

 CCD images are grey scale representations of the collected and stored ADUs.

CCD Image Types

SPECTROSCOPY

Spectra - light dispersed into pixels that correspond to colors.

Trends:

- CCDs ~75-200 µm thick for astronomy (more for x-rays) –
 -being developed by several manufacturers.
- Conventional CCD readout will be limited to a small number of segments (power dissipation, number of connections).
- Silicon PIN CMOS remain to be proven and accepted in astronomy. If so, will prevail for short readout times. CCDs will still be best for long integration times.
- Pixel size will bottom out (full well charge, readout time, ...).
- CCD-CMOS hybrids need to be explored for high performance imaging in astronomy (they are being actively developed for other fields).