Physics 134 Philip Lubin www.researchgate.net/profile/Philip_Lubin www.deepspace.ucsb.edu/classes

Introduction Lecture 2

Angular Measurements

- 360 degrees (360°) in full circle
- 2π radians = 360 degrees
- 1 degree = $2\pi/360=0.01745$ radians (rad)
- 1 rad = $360/2\pi = 57.296$ degrees
- 1 rad = 206,265 arc sec
- Subdivide one degree into 60 arcminutes
 - minutes of arc
 - abbreviated as 60 arcmin or 60' (NOT feet)
- Subdivide one arcminute into 60 arcseconds (arc sec)
- 1 degree = 60*60=3600 arc sec
 - seconds of arc
 - abbreviated 60 arcsec or 60" (NOT inches)

 $1^{\circ} = 60 \operatorname{arcmin} = 60'$ $1' = 60 \operatorname{arcsec} = 60''$

Astronomical distances are often measured in astronomical units, parsecs, or light-years

• Astronomical Unit (AU)

- One AU is the average distance between Earth and the Sun
 1.406 V 108 last on 02.06 million miles
- 1.496 X 10⁸ km or 92.96 million miles

• Light Year (ly)

- One ly is the distance light can travel in one year at a speed of about 3 x 10⁵ km/s or 186,000 miles/s
- 9.46 X 10¹² km or 63,240 AU

• Parsec (pc)

- the distance at which 1 AU subtends an angle of 1 arcsec or the distance from which Earth would appear to be one arcsecond from the Sun
- $-1 \text{ pc} = 3.09 \times 10^{13} \text{ km} = 3.26 \text{ ly}$

How a Parsec (pc) is Defined 1 pc ~ 3.26 ly

Distances to Objects

Distance	Comments
1.3 pc	Closest Star (α Centauri – Proxima is closest)
1.3 light seconds	Earth to Moon
8 light minutes	Earth to Sun
5 light hours	Pluto
4.2 ly	Closest Star
$2.5{ imes}10^4$ ly	To Galactic Center
10^5 ly	Galactic Diameter
$2{ imes}10^6$ ly	Andromeda (M31)
10 ¹⁰ ly	Most distant observed galaxy
$2\! imes\!10^{10}$ ly	Size of Universe

LCO World Wide Sites

https://lco.global/observatory/sites/

LCO sites

	Elevation (m)	Code	Timezone	Status
Siding Spring Observatory 31° 16′ 23.88″S 149° 4′ 15.6″E	1,116	COI	UTC+10	1 x 2-meter (#02) 2 x 1-meter (#11,#03) 2 x 0.4-meter (#03,#05)
South African Astronomical Observatory 32° 22' 48″S 20° 48' 36″E	1,460	СРТ	UTC+2	3 x 1-meter (#10,#13,#12) 1 x 0.4-meter (#07)
Teide Observatory 28º 18' 00"N 16° 30' 35"W	2,330	TFN	UTC	2 x 0.4-meter (#14,#10) 2 x 1-meter (coming online 2021)
Cerro Tololo Interamerican Observatory 30° 10' 2.64"S 70° 48' 17.28"W	2,198	LSC	UTC-3	3 x 1-meter (#05,#09,#04) 2 x 0.4-meter (#09,#12)
McDonald Observatory 30° 40' 12″N 104° 1' 12″W	2,070	ELP	UTC-6	2 x 1-meter (#08,#06) 1 x 0.4-meter (#11)
Haleakala Observatory 20° 42' 27″N 156° 15' 21.6″W	3,055	OGG	UTC-10	1 x 2-meter (#01) 2 x 0.4-meter (#06,#04)
Wise Observatory 30° 35' 45" N 34° 45' 48"E	875	TLV	UTC+2	1 x 1-meter
Ali Observatory 32° 19' N 80° 1'E	5,100	NGQ	UTC+8	Under construction

LCO 0.4m Telescopes In "dome" and in Chile

https://lco.global/observatory/telescopes/04m/

Some LCO Telescope Sites

UL: 2m Haleakala HI, UR: 2m Siding Springs AU LL: Siding Springs complex LR: Sedgwick CA

LCO Resources Ico.global

- Instruments
 - lco.global/observatory/instruments/
- Exposure and SNR Calculator
 - exposure-time-calculator.lco.global/
- Filters
 - lco.global/observatory/instruments/filters/
- BANZAI Data Processing Pipeline

 lco.global/documentation/data/BANZAIpipeline/
- Recent Science and Educational Research

 //lco.global/highlights/
- Spacebook Learn Astronomy – https://lco.global/spacebook/

Human Eye Response

Magnitudes – to describe "brightness"

- Magnitudes need to be specified at a wavelength
- m_v is "visible" band eye peak about 550nm)
- m=Apparent magnitude (as we measure)
- M=Absolute magnitude (as though obect were a point source at d=10 pc
- Defined based on historical human perception
 - Larger m is dimmer
 - Log scale 5 mag =100x brightness
 - m=15 is 100x dimmer than m=10)

$$m_2 - m_1 = 2.5 \log \frac{b_1}{b_2}$$
$$M - m = 2.5 \log \left(\frac{10 \text{ pc}}{d}\right)^2 = 5 \log \frac{10 \text{ pc}}{d} = 5 \log 10 - 5 \log d = 5 - 5 \log d$$

Magnitudes and Flux Brightest Star (Sirius A ~ m_v=-1.46) Unaided human eye can see down to about m=6 Assuming a clear dark sky (not SB)

Magnitude	Flux	Eye	Palomar (photons/s)
	(photons $\text{cm}^{-2} \text{ s}^{-1}$)	(photons/s)	
0	3×10^{6}	10 ⁶	6×10^{11}
5	3×10^{4}	10 ⁴	6×10^{9}
10	300	100	6×10^{7}
15	3	1	6×10^{5}
20	0.03	10 ⁻²	6×10^3
25	3×10^{-4}	10 ⁻⁴	60
30	3×10^{-6}	10 ⁻⁶	0.6

$$F(m=0) = 1 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \times \frac{1 \text{photon}}{3.6 \times 10^{-12} \text{ erg}} \approx 3 \times 10^{6} \text{ photons cm}^{-2} \text{ s}^{-1}$$
$$m_2 - m_1 = 2.5 \log \frac{b_1}{b_2}$$

Imaging Sensor Parameters & SNR Typical device is cooled CCD or CMOS – LCO uses CCD's

Symbol	Quantity (units)
N_R	Readout Noise (e^-)
i _{DC}	Dark Current (e^-/s)
Q_e	Quantum efficiency (dimensionless)
F	Point Source Signal Flux on Telescope (photon $\mathrm{s^{-1}\ cm^{-2}}$)
F_{eta}	Background Flux from Sky (photons $s^{-1}cm^{-2} \ arcsec^{-2}$)
Ω	Pixel Size (arcsec) (assuming greater than seeing)
ε	Telescope Efficiency (dimensionless)
τ	Integration Time (s)
A	Telescope Area (cm ²)

- Signal from Source $S = F \tau A \varepsilon Q_e$
- Dark current in detector $S_{DC} = i_{DC} \tau$
- Background signal $S_{\beta} = F_{\beta}A\varepsilon Q_{e}\Omega\tau$

Noise and Signal

- Time dependent signal term $S_{\text{time}} = S + S_{DC} + S_{\beta}$
- Assume all of these terms are uncorrelated
- Error in terms $N_s = \sqrt{S}$ $N_{DC} = \sqrt{S_{DC}}$ $N_{\beta} = \sqrt{S_{\beta}}$
- Uncorrelated errors add in quadrature $N_{\text{time}} = \sqrt{N_{S}^{2} + N_{DC}^{2} + N_{\beta}^{2}} = \sqrt{S + S_{DC} + S_{\beta}} = \sqrt{F\tau A\varepsilon Q_{e} + i_{DC}\tau + F_{\beta}A\varepsilon Q_{e}\Omega\tau}$
- Detector Read noise NOT integration dependent

$$N_{\text{tot}} = \sqrt{N_R^2 + N_{\text{time}}^2} = \left(N_R^2 + \tau(i_{DC} + F_\beta A \varepsilon Q_e \Omega)\right)^{1/2}$$

- Define "effective area" $A_{\varepsilon} = A \varepsilon Q_{e}$
- Total noise per unit time $N_T = FA_{\varepsilon} + i_{DC} + F_{\beta}A_{\varepsilon}\Omega$

Signal to Noise Ratio (SNR)

$$\frac{S}{N} = \frac{FA_{\varepsilon}\sqrt{\tau}}{\left[\frac{N_{R}^{2}}{\tau} + FA_{\varepsilon} + i_{DC} + F_{\beta}A_{\varepsilon}\Omega\right]^{1/2}} = \frac{FA_{\varepsilon}\sqrt{\tau}}{\left[\frac{N_{R}^{2}}{\tau} + N_{T}\right]^{1/2}} = \frac{FA_{\varepsilon}\tau}{\left[N_{R}^{2} + \tau N_{T}\right]^{1/2}}.$$

$$N_T = FA_{\varepsilon} + i_{DC} + F_{\beta}A_{\varepsilon}\Omega \qquad A_{\varepsilon} = A\varepsilon Q_e$$

Integration Time to Obtain Desired SNR (S_N)

$$S_N \equiv S / N = FA_{\varepsilon}\tau / \left[N_R^2 + \tau N_T\right]^{1/2}$$

$$\tau = \frac{S_N^2 N_T \pm \sqrt{S_N^4 N_T^2 + F^2 A_{\varepsilon}^2 S_N^2 N_R^2}}{2F^2 A_{\varepsilon}^2}$$

$$=\frac{S_{N}^{2}N_{T}}{2F^{2}A_{\varepsilon}}\left[1+\sqrt{1+\frac{4F^{2}A_{\varepsilon}^{2}N_{R}^{2}}{S_{N}^{2}N_{T}^{2}}}\right]$$

Example (20 magnitude object)

$$N_{R} = 12$$

$$i_{DC} = 1 e^{-} s^{-1} \text{ pixel}^{-1} \text{ at } 35^{\circ}\text{C}$$

$$Q_{e} = 0.3$$

$$A = 10^{3}$$

$$\varepsilon = 0.5$$

$$F_{\beta} = 10^{-2} \text{ photons } s^{-1} \text{ cm}^{-2} \operatorname{arcsec}^{-2} \text{ (ideal sky)}$$

$$\Omega = 4 \operatorname{arcsec}^{2}$$

F = 0.03 photons s⁻¹ cm⁻² (20th magnitude)

Integration Time (sec)	SNR ($F_eta=10^{-2}$)	SNR ($F_eta=0.1$)
1	0.4	0.3
10	2.8	1.6
100	13	5.5
1000	42	18

Aperture Photometry Removing sky from source

Symbol	Meaning
N _{IA}	Number of pixels in inner aperture
N _{OA}	Number of pixels in outer aperture
G(j,k)	Pre-flat-fielded image array
R	A/D counts per e^-
N(j,k)	$G(j,k)/R$, the pixel value in e^-

