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ABSTRACT 

This paper describes a freely-available spread-
sheet that has been developed to simulate the 
conditions of reaction rate, core acceleration and 
velocity, energy generation, and pressure within 
a detonating fission-bomb core. When applied 
to a model of the Hiroshima Little Boy bomb, the 
spreadsheet predicts a yield of 12.7 kilotons, a 
figure in reasonable agreement with published 
values. 
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1. INTRODUCTION 

The discipline of computational physics is now regarded 
as possessing importance equal to the traditional areas of 
experimental and theoretical studies. As such, it is im-
portant that our students be introduced early in their ca-
reers to the power of modern desktop computational 
tools that can be used to model physically interesting 
systems. Computational models can facilitate study of 
physical systems where the theory cannot be solved 
purely analytically and/or that are not easily realizable 
experimentally. Sometimes a single graph can serve to 
dramatically make a point about the behavior of a sys-
tem that is “latent” in the mathematics but whose mag-
nitude is not immediately apparent. This paper describes 
and makes freely available an Excel spreadsheet to carry 
out a student-level simulation of a system that exempli-
fies all of these points: the conditions of energy release, 
pressure, fission rate, and expansion inside the core of a 
detonating fission bomb. The physics of nuclear weap-
ons has been and will remain a fascinating and timely 
subject. These devices are forbidding and mysterious to 
students and the general public alike; by helping our 
students to understand some of the details of their func-
tioning we can equip them to play constructive roles in 
furthering public understanding of them. 

The basic physics of criticality conditions in both 

“bare” (untamped) and tamped fission cores is described 
in two papers previously published by this author [1,2]. 
Because the time-dependence of conditions within a 
fissioning core is highly non-linear, approximate analytic 
expressionss had to be developed in those papers in or-
der to arrive at estimates of bomb yields and efficiencies. 
The purpose of this paper is to utilize the theoretical 
foundations established in those papers to build an ap-
proximate but easy-to-use numerical simulation of a core 
whose mass, nuclear properties, and tamper properties 
are set by the user. The resulting spreadsheet is made 
freely downloadable to interested readers. 

The structure of this paper is as follows. In Section 2 I 
lay out the theoretical background; while this is adopted 
directly from References [1] and [2] it is presented here 
for sake of a self-contained discussion. The program-
ming of the simulation itself is described in Section 3, 
and in Section 4 I present the results of a simulation of 
the Hiroshima Little Boy uranium bomb. A brief sum-
mary is presented in Section 5. 
 
2. FISSION-CORE PHYSICS 
 
The essential physical quantity within a fissioning bomb 
core is the number density of neutrons, N. As described 
in References [1] and [2], diffusion theory leads to an 
approximate expression for the space and time- depend-
ence of N within a spherically symmetric core of the 
form 
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In this expression, No is the initial neutron number den-
sity at the center of the core, and is set by whatever initi-
ating device starts the chain reaction.  is the average 
time that a neutron will travel before causing a fission,  

neut
core
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where vneut is the average neutron speed and core
fiss  is 

the mean free path for neutrons between fissions in the 
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where n is the nuclear number density and f  the fis-

sion cross-section of the fissile core material. dcore in 
Eq.1 has units of length and can be thought of as fun-
damentally setting the size of the critical radius; it is 
given by 
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where   is the number of neutrons emitted per fission 

(so-called secondary neutrons) and trans
core  is the trans-

port mean free path for neutrons, 
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t is the so-called transport cross-section. If non-fission 
neutron capture can be ignored (which should be the 
case for any sensibly pure fissile material), this is given 
by the sum of the fission and elastic-scattering cross- 
sections:  

elft                    (6) 

The parameter  in Eqs.1 and 4 arises in a separation 
of variables in solving the diffusion equation for the 
neutron density, and is itself time-dependent as it de-
pends on the core radius as described in what follows. 
First consider the case of an untamped core, also known 
as a bare core. As described in References [1] and [2], 
application of appropriate boundary conditions to Eq.1 
to ensure that there is no way for neutrons which have 
passed out through the surface of the core to be reflected 
back inside it from the external world leads to the fol-
lowing constraint for the core radius RC: 

       0  1  /2/3  /cot/  coreC
core
transcorecoreCcoreC dRddRdR 

 (7) 

This is the criticality condition for a bare core. Satis-
faction of this constraint depends on through its ap-
pearance in dcore. If = 0, then the neutron number den-
sity is neither growing nor diminishing in time, a condi-
tion known as threshold criticality. (In an implosion 
weapon, the moment when this state first occurs during 
compression of a subcritical core into a supercritical 
mass is known as first criticality. The present work is 
not inteneded to model implosion scenarios, which are 
much more complex on account of the inward motion of 
the core at the moment when fissions are initiated.) In 
this case dcore is completely determined by the fissility 
parameters, and the value of RC which satisfies Eq.7 is 

the bare threshold critical radius, thresh
bareR ; for pure 

U-235 this is about 8.4 cm, equivalent to about 46 kg.  

As explained in Reference [1], if one starts with a core 
of specified radius RC > thresh

bareR , then Eq.7 can be 

solved for  (through dcore); one will find that > 0, 
which means that the neutron density is growing expo-
nentially in time, a condition known as “supercritical-
ity.” As the core rapidly (within a microsecond) expands 
due to the extreme rate of release of energy by fissions, 
will decline as a function of time until it reaches zero, 
at which point the chain reaction will rapidly shut down; 
this situation is known as “second criticality” and effec-
tively marks the end of the detonation phase. 

In Reference [2], it is shown that if the core is sur-
rounded by a snugly-fitting tamper of non-fissile and 
non-neutron-absorbing material, diffusion theory leads 
to the following expressions for the neutron density wi- 
thin the tamper material: 
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where  is as above and  is again the mean travel time 
for neutrons between fissions in the core, A and B are 
constants of integration to be determined by boundary 
conditions, and dtamp is given by 
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where tamp
trans  is the mean free path for neutron transport 

in the tamper material, analogous to Eq.5 except that the 
tamper material is presumed to have no fission cross- 
section: 
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If the core and tamper have outer radii Rcore and Rtamp, 
then demanding the continuity of neutron density and 
flux at the core/tamper interface and again requiring that 
that no neutrons which escape from the tamper to the 
external world can be reflected back, one finds that the 
criticality conditions emerge as  
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Eq.11 corresponds to tamped threshold ( = 0) criti-
cality. Once values for the d’s and ’s are given the only 

unknown is Rcore
thresh , the core radius for tamped thresh-

old criticality. In using Eqs.12 and 13 the idea is that one 
again specifies the mass and hence radius of the core, 

Rcore (>
thresh
coreR ), and solves for . This would presuma-

bly be the value of when fissions are initiated at t = 0; 
as the core expands  will subsequently decline until 
second criticality is reached. A tamper serves to increase 
the efficiency (and hence the yield) of a weapon through 
two effects. First, by briefly retarding the expansion of 
the core, the tamper causes  to remain greater for a 
longer time than it would have otherwise; this is benefic- 
ial as the rate of fissions – and hence the energy release – de-
pends exponentially on . Second, the tamper serves to 
reflect neutrons back into the core, effectively decreas-
ing the loss of fission-causing neutrons from within the 
core to the outside world. In modern weapons – engi-
neering parlance a tamper is known as a reflector; I re-
tain the historical terminology. The retardation effect is 
difficult to model analytically at this level and so is not 
accounted for in Eqs.12 and 13; they do, however, in-
clude the reflection effect in the boundary conditions 
used to establish them. The retardation effect is treated 
approximately in the simulation as described following 
Eq.17 below. 

We can now consider the time-dependence of various 
quantities in order to begin formulating a simulation. At 
a moment when the core has volume Vcore, the rate of 
fissions R(t) (fission/sec) is given by 

   tcoreo e
VN

tR 
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If each fission releases energy Efiss (typically ~ 180 
MeV), then the rate of energy release within the core is 

 tfisscoreo e
EVN

dt

dE 
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The total energy liberated to a given time can be 
tracked by numerically integrating Eq.15; this deter-
mines the pressure within the core as a function of time. 
This follows from the thermodynamic pressure – energy 
density relationship 
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The choice of the parameter  depends on whether gas 
pressure ( = 2/3) or radiation pressure ( = 1/3) is 
dominant; the latter dominates for per-particle energies 
greater than about 2 keV and will presumably be the 
case for the later, more energetic stages of the reaction. I 
use the core volume in Eq.16 on the rationale that the 
fission products which cause the gas/radiation pressure 
will likely largely remain within the core.  

Following Reference [1], I model the core as an ex-
panding sphere of radius r(t) with all parts of the sphere 
moving at speed v(t), driven by the energy release from 
fissions. Do not confuse this velocity with the average 
neutron speed, which does not directly come into this 
part of the development (it does enter implicitly, how-
ever, through ). Invoking the work-energy theorem in 
its thermodynamic formulation, W = P(t) dV, I equate 
the work done by the gas (or radiation) pressure in 
changing the core volume by dV over time dt to the 
change in the core’s kinetic energy over that time:  

dt

dK

dt

dV
P                     (17) 

For simplicity in developing the simulation, I treat the 
tamper as remaining of constant density. Now, it is de-
sirable to make some effort to account for the retarding 
effect of the tamper on the core. To do this, I treat the 
dK/dt term in Eq.17 as involving the velocity of the core 
expansion but with the mass involved being that of the 
core plus that of the tamper. The dV/dt term is taken to 
apply to the core. With r as the radius and v the expan-
sion velocity of the core, we have 
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Numerically integrating this result will give v(t) = 
dr/dt, which can be integrated to give the core radius as a 
function of time. 
 
3.THE SIMULATION 
 
I have developed an Excel spreadsheet to carry out the 
calculations described above. This is freely available at 
http://othello.alma.edu/~reed/FissionCore.xls. In this Se- 
ction I describe the general layout of this spreadsheet; 
some results are described in Section 4 below. 
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This spreadsheet consists of three interlinked sheets. 
On the first, the user inputs fundamental data such as 
core and tamper material densities, atomic weights, 
cross-sections, the secondary neutron number, the aver-
age secondary-neutron energy, values for Ef and , the 
desired core mass, the outer radius of the tamper, and the 
number of “initial neutrons” in the core at t = 0. These 
are entered in convenient units such as g/cm3, barns, and 
MeV; the spreadsheet subsequently carries out all calcu-
lations in MKS units. The Excel “Goal Seek” function is 
then run three times, to establish values for 1) the bare 
threshold critical radius, 2) the tamped threshold critical 
radius, and 3) the value of  corresponding to the chosen 
core mass. The masses in 1) and 2) are computed for 
reference and for the fact that they are needed for some 
calculations involving the expansion of the core as de-
scribed below. The chosen core mass should exceed that 
corresponding to thresh

tampR . 

A significant complexity in carrying out this simula-
tion is that one apparently needs to solve Eq.12 for the 
value of  corresponding to each time-stepped core ra-
dius between first and second criticality: the fission rate, 
energy generation rate, and pressure all depend on  as a 
function of time. I have found, however, that  is usually 
quite linear as a function of core radius. This behavior 
greatly simplifies the actual time-dependent simulation. 
Sheet 2 of the spreadsheet allows one to establish pa-
rameters for this linear behavior for the values of the 
various parameters that the user inputs on Sheet 1. Here, 
the user solves (again using the Goal Seek function) for 
the value of  for 25 values of the radius. These start at 
the initial core radius and proceed to 1.25 times the 
value of the second-criticality radius for a bare core of 
the mass chosen by the user on Sheet 1; this range ap-
pears to be suitable to establish the behavior of . The 
rationale for this arrangement is as follows. As shown in 
Reference [2], if the chosen core mass is equal to C bare 
threshold critical masses, criticality will hold over a 
range of radii given by 

 1/2 1/3  thresh
barer C C R             (19) 

The presence of a tamper means that the core will ex-
pand somewhat beyond r before second criticality is 
reached, but Eq.19 sets the essential length scale of the 
expansion. For convenience, Sheet 2 utilizes a “normal-
ized” radius defined as   
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where C is now defined as the number of tamped thresh-
old critical masses. rnorm = 1 corresponds to the second 
criticality radius one would compute from Eq.19 if it 
applied as well to a tamped core. Sheet 2 tracks the 
changing mass density, nuclear number densities, and 

mean-free-paths within the core as a function of r. By 
running the Goal Seek function on each of the 25 radii, 
the user adjusts  in each case to render Eq.12 equal to 
zero. The behavior of (r) is then displayed in an au- 
tomatically-generated graph. On a separate line with 
fixed to a value very near zero (10-10 is built-in), the 
user adjusts the radius to once again render Eq.12 equal 
to zero, thus establishing the radius of second criticality 
for his or her parameters. The slope and intercept of a 
linear (r) fit are then automatically computed in prepa-
ration for the next step.  

The actual time-dependent simulation occurs on Sheet 
3. The simulation is set up to involve 500 timesteps, one 
per row. The initial core radius is transferred from Sheet 
1 for t = 0. Because much of the energy release in a nu-
clear weapon occurs during the last few generation of 
fissions before second criticality, this Sheet allows the 
user to set up two different timescales: an “initial” one 
(dtinit) intended for use in the first few rows of the Sheet 
when a larger timestep can be tolerated without much 
loss of accuracy, and a later one (dtlate), to be chosen 
considerably smaller and used for the majority of the 
rows. In this way a user can optimize the 500 rows to 
both capture sufficient accuracy in the last few fission 
generations and arrange that (r) is just approaching 
zero at the last steps of the process. Typical choices for 
dtinit and dtlate might be a few tenths of a microsecond 
and a few tenths of a nanosecond, respectively. At each 
radius, the Sheet computes the value of (r) from the 
linear approximation of Sheet 2, the core volume, mass 
density, nuclear number densities and mean free paths 
within the core, , rates of fission and energy generation, 
pressure, and total energy liberated to that time. The ac-
celeration of the core is computed from Eq.18, and the 
core velocity and radius are updated depending upon the 
timestep in play; the new radius is transferred to the 
subsequent row to seed the next step. The user is auto-
matically presented with graphs of (r), the fission rate, 
pressure, and total energy liberated (in kilotons equiva-
lent) as functions of time. 
 

4. A SIMULATION OF THE HIROSHIMA 
LITTLE BOY BOMB 

 
As described in References [2] and particularly [3], the 
Hiroshima Little Boy core comprised about 64 kg of en-
riched U-235 in a cylindrical configuration surrounded 
by a cylindrical tungsten-carbide tamper of diameter and 
length 13 inches, mass approximately 310 kg, and den-
sity 14.8 g /cm3. Values for the various core and tamper 
parameters are given in Table 1; these are adopted from 
Reference [2]. Assuming these values and taking the 
core to be spherical (radius 9.35 cm at a density of 18.71 
g/cm3; this figure is 235/238 times the density of natural 
uranium, 18.95 g/cm3) and surrounded by a spherical 
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tungsten-carbide tamper of outer radius 18 cm (mass 311 kg), 
Sheet 1 of the author’s spreadsheet indicates that the 
tamped threshold critical mass of U-235 in this configu-
ration is 18.4 kg, about a 60% reduction from the bare 
threshold critical mass of 45.9 kg. Figure 1 shows that 
the run of (r) for this situation is quite linear out to the 
computed second criticality radius of 12.04 cm. Upon 

Table 1. Parameters for U-235 core/tungsten-carbide tamper 
model. 

 

 

Figure 1. Criticality parameter  as a function of radius for the 
simulation of the Little Boy 64-kg U-235 core plus 311-kg 

tungsten-carbide tamper. (r) is approximately linear, with 
slope -20.35 m-1 and intercept 2.45 m. 

 

Figure 2. Criticality parameter  (thin line, left scale) and 
cumulative energy yield in kilotons (thick ascending solid line, 
right scale) for the Little Boy simulation. 

 

Figure 3. Logarithmic plots of pressure in Pa (thin line, right 
scale) and rate of fissions per second (thick descending solid 
line, left scale) for the Little Boy simulation. 

adopting  = 1/3, an equivalence of 4.2 × 1012 Joule/kt 
and a single initial neutron to start the reaction (No = 292 
m-3), Figures 2 and 3 show the results of the simulation.  

The brevity and violence of the detonation are aston-
ishing. The vast majority of the energy is liberated 
within an interval of about 0.1 s. The pressure peaks at 
close to 5 × 1015 Pa, or about 50 billion atmospheres, 
equivalent to about one-fifth of that at the center of the 
Sun, and the fission rate peaks at about 4 × 1031 per sec-
ond. The core acceleration peaks at about 1.5 × 1012 m/s2 
at t – 0.9 s, and second criticality occurs at t – 1.05 s, 
at which time the core expansion velocity is about 270 
km/s. These graphs dramatically illustrate what Robert 
Serber wrote in The Los Alamos Primer : “Since only the 
last few generations will release enough energy to pro-
duce much expansion, it is just possible for the reaction 
to occur to an interesting extent before it is stopped by 
the spreading of the active material” [4]. The predicted 
yield of Little Boy from the present model is 12.7 kt. 
This result is in surprisingly good agreement with the 
estimated – 12 kt yield published by Penney, et al. [5]. At 
a fission yield of 17.59 kt per kg of pure U-235, this 
represents an efficiency of only about 1.1% for the 64 kg 
core. Some of this agreement must be fortuitous, how-
ever, in view of the approximations incorporated in the 
present model. That the yield estimate needs to be taken 
with some skepticism is demonstrated by the fact that 
increasing the initial number of neutrons to 10 increases 
the yield to 18.7 kt. However, this change does not much 
affect the timescale or the peak pressure and fission rates. 
Users who download FissionCore.xls will find this ex-
ample pre-loaded. 
 
5. SUMMARY 
 
This paper describes the development of a spreadsheet 
for simulating the conditions within a detonating fis-
sion-bomb core. The simulation is straightforward 
enough to be used with students, and for a simulation of 
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the Hiroshima Little Boy bomb predicts a yield in rea-
sonable accord with published values. This type of 
simulation can help students grasp some of the underly-
ing physics of and get a sense of the extreme physical 
conditions that briefly occur within such devices.  
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