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ABSTRACT
We analyze the usage of impact parameters to get accurate data on exoplanets. We first calculate the signal-to-noise ratio based 
on the change of impact parameter and the planet-star ratio, which could help scientists choose the exoplanets that have the 
clearest signal. We then model the changing of the impact parameter of the system that contains different numbers of exoplanets 
and derives a polynomial best regression function between the number of clearly changed impact parameters and the number of 
exoplanets in the system, which could help future scientist to discover the unnoticed planets. In the same section, we also derive 
the relationship between the theoretical ¤ with respect to the mass and period of the planets that could exemplify the ideal 
characteristic of the exoplanets that be suitable for approximate mass based on ¤ . We finally search for various Kepler planets 
and applied the linear function of the impact parameters to get accurate parameters for multiple Kepler planets and analysis the 
corresponding accuracy statistically. For the occurrence of long-term linear increases in impact parameter values, we provide 
the following possibilities that exhibit strong signal-to-noise ratios, clear light curves, and significant z-scores. We can optimize 
the characteristics of verified Kepler planets by controlling orbital precession, and we can also hypothesize the existence of non-
transit planets in the Kepler system.

Key words: Impact Parameters – Mutual Inclination – Transit Duration Variation

1 INTRODUCTION

Since the start of civilization, humans never extinguish their curiosity
about outer space. With the launching of the Kepler telescope, enor-
mous breakthrough took place in the understanding of exoplanets
by identifying thousands of more confirmed planets, optimizing the
parameters Batalha et al. (2013), and revealing the general statistic
of exoplanets along with their system Fang & Margot (2012).

The majority of the exoplanets are detected by observing the
changes in the flux of the star in the system Borucki et al. (2010).
All of the planets in the system will transit from the star in our tele-
scopes requires those planets’ approximate co-planar (relatively low
mutual inclination angle). Even though the majority of the Kepler
system follows this pattern, a portion of the system still obtained a
larger inclination angle Zhu & Dong (2021), which will cause the
transit of some exoplanets in the system not visible by earth tele-
scope. Due to the existence of non - transiting planets, there is a
significant distinction between the detected and expected number of
Kepler planets, which is known as the Kepler dichotomy. To resolve
this, we have attempted to detect the non-transit planets by observing
their gravitational influence on transit planets via the constraints of
mutual inclination.
Mutual Inclination ismore significant in planetswith a short period

that is placed in a close pack system composed of other large mass
planets, which commonly exist in the Kepler population as revealed
by Batalha et al. (2013), Borucki et al. (2011), Borucki et al. (2010),
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and Fabrycky et al. (2014). Because of their large distribution, various
previous research has combinedmutual inclinationwith Transit Time
Variation Hadden&Lithwick (2014) Judkovsky et al. (2020), Transit
Duration Variation from orbital precession Hamann et al. (2019),
and Radial Velocity survey Tremaine & Dong (2012), to discover the
non-transit planet.

All previous Kepler models assumed the impact parameter is con-
stant beside a very recent publication Millholland et al. (2021). Im-
pact parameters can change because of various effects: the uneven
distribution of gravity due to the inclination angle and eccentricity,
the changing of the period due to orbital resonance, and the varia-
tion of the semi-major axis that resulted from transit time variation.
Because of those, the study of impact parameters combined with
transit time variation can help us understand the variation of planets’
period, semi-major axis, and inclination thus deriving more accurate
parameters for exoplanets.

Wemodel this effect and search for candidates that obtained planet
star ratio bigger than 0.03, but smaller than 0.1, mass bigger than
four earth mass, period less than, but bigger than, and the number
of confirmed planets in that system less or equal to four. We also
model the expected signal-to-noise(SNR) and the number of viable
candidates and found SNR obtains a proportional relationship with
the mass and radius of the planets relative to its star, and an inverse
relationship with the period of the planets and the number of planets
in the system.We cross-validate our search results to place constraints
on Kepler planets into the planets with higher mass, shorter period,
larger planet-star radius ratio, and the system with a lower number of
planets.
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Table 1. Notation Table.

Notation Description

t time
a semi-major axis
b Impact Parameters
'∗ radius of the star
"∗ mass of the star
m mass of the planet
W window for savigol
C0 Transit Epoch
¤1 The changing of impact parameters respect to time
T Period
p Planet-star ratio
D1 Limb Darkening Parameter 1
D2 Limb Darkening Parameter 2
d∗

"∗
A3
∗
, the density of the star

l orbital frequency
−→
Θ Parameter Vector for Light curve deternding
−→
Θ1

−→
Θwhen b is changing

−→
Θ (=)

−→
Θ after nth optimization

n number of data points
N number of planets in that system
#) number of transits
z normalized separation between centers
�̄ raw flux from Kepler telescope
�̂ Model flux generated from

−→
Θ

� Actual flux from Kepler telescope
f Standard deviation for the error of the F and �̂
f1 Standard deviation for the error of �̂ (−→Θ1) and�̂ (

−→
Θ)

f� Standard deviation for the inclination of planets

Similar computation has also been done by Daniel Fabrycky from
the Department of Astronomy and Astrophysics at the University of
Chicago, Sahar Shahaf and Tsevi Mazeh from the School of Physics
and Astronomy, Shay Zucker from Porter School of the Environment
and Earth Sciences, at Tel Aviv University. In their paper, "System-
atic search for long-term transit duration changes in Kepler transiting
planets" from 2020 and "Light-Curve Evolution due to Secular Dy-
namics and the Vanishing Transits of KOI 120.01" from 2021, both
Transit Time Variation and Transit Depth Variation were applied and
deduced the possible existence of a nontransit planet in KOI 120
system among with 16 other system. However, our approach is dif-
ferent as we mainly focus on the effect of the changing of impact
parameters.
Section 2 of the paper presented our theoretical calculation of the

signal-to-noise ratio of planets with secular changing impact param-
eters, Section 3 shows the derivation of impact parameter changes
from their mutual inclination and the perturbation of two planet sys-
tems and estimated the relative frequency of those planets in the
Kepler population from two different models, and demonstrates our
process in light curve modeling, and Section 4 presents our diffrac-
tion model.
6. The notation that appears in the paper is presented in table 1.

2 METHOD

This chapter presented our sample selection method. 2.1 reveals the
assumption of this research. 2.2 present the relationship between the
signal-to-noise ratio and the planet’s impact parameters and planet-
star ratio. 2.3 demonstrates our model of the planet perturbations and

presents the relationship between the changing of impact parameters
and the planet’s mass and the correlation of the number of planets in
a system with the probability of detecting planets with ¤1 > 0.1 per
year. 2.4 presented how the candidates in the research are selected
based on models 2.2 and 2.3.

2.1 Assumption

There are three assumptions we have made to conduct this research.
First of all, we assume the impact parameter changes linearly. Sec-
ondly, we assume quadratic limb darkening with Agol Mandel light
curve models and the planet is small enough that limb darkening
will not take effect inside the planets. Thirdly, we correct for Tran-
sit Time Variation and assume no stellar variability and no Transit
Depth Variation due to other causes, like inclination or eccentricity.

2.2 SNR Calculation

Generate a plot of the difference between constant b and db/dt model,
and another plot of SNR as a function of b, R/R*, etc... If equations
are too long - we put them in the appendix

The flux from a star during a planet transit is given by the equation
below from Mandel & Agol (2002).

In the equation below, d is the center-to-center distance between
the star and the planet, A? is the radius of the planet, A∗ is the stellar
radius, I = 3/A∗ is the normalized separation of the centers, and
? = A?/A∗ is the size ratio

� = 1 −
?2^0 + ?2^1 −

√
4I2 − (1 + I2 − ?2)2

4


1
c

(1)

^1 = cos−1
[

1−?2+I2

2I

]
^0 = cos−1

[
?2+I2−1

2?I

]
We then expand z into its horizontal components x and vertical

components b, which are also the impact parameters of the planets,
based on the Pythagorean theorem.

I =
√
G2 + 12 (2)

After that, we plug z into the flux function and calculate the numerical
value of d�

d1 and then calculate X�2 based on the equation below,
where d1

dC is set equal to 0.01 per year.〈
X�2

〉
≈ 1

2(1 + ?)

∫ 1+?

−1−?
( d�0 (G)

d1
d1
dC
)#) )23G (3)

We finally calculated (#'2based on equation below

(#'2 =
〈
X�2

〉
· ( g
203
) · 1

2f2 (4)

Here
〈
X�2〉 is the mean-square difference of two models, gis the

transit duration, and cad is the cadence of Kepler Telescopes. We
applied the short cadence which is equal to 2 minutes, and the cor-
responding f equal to 8e-4. #) is the number of transits in the data
set, which is given by

#) =
1
)

(5)

in which T is the period of the planets equals to 30 days.
g is given by

g =
'∗
0
) (6)
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Figure 1. The signal-to-noise ratio (SNR) over the impact parameters of the
planets for four different planet-star ratios. G-axis is the impact parameter
and H-axis is the SNR. The colorful lines represent the results of different
planet-star ratios respectively.

Table 2. R Squared Value of Four Impact Parameter to SNR lines.

Planet-star Ratio R-Squared

0.01 0.99848
0.02 0.99849
0.04 0.99846
0.1 0.99827

which R* means the radius of the star. In this case, we set '∗0 = 50
We then plot the signal-to-Noise Ratio as the function of the impact

parameter, which is shown in figure ??. The impact parameter is
ranged from 0.1 to 0.8, and the p values for the four lines are 0.01,
0.02, 0.04, and 0.1 respectively.
Finally, we calculate the exponential best fit line for the four lines

and express the equation in terms of p and b, which is presented
below.

(#' ≈ 406.8 · (1?)
3
2 (7)

The R Squared values are shown in table ??.
.

2.3 Kepler modelling

We analyze the statistical properties of Kepler planets and compute
the distribution of d�

d1 with respect to the number of planets in the
system. For the artificial planets, we randomly choose the radius from
all theKepler planets.We then generated themass of the planets based
on the radius by assuming the density is approximately equal to the
earth’s density and applied the equation below (Zhu et al. 2018).

< = 3.0 · 10−6 · A2.06 (8)

We then randomly choose the period of the first planet in the
system and generate the rest based on the period of the first through
log uniform distribution with a lower limit of 1.3 and an upper limit
of 4.0. The semi-major axis of the planets is calculated based on the

Kepler 3rd law below, in which M is the mass of the sun, m is the
mass of the planet, and T stands for the period of the planet.

0 =
3
√
)2 ("∗ + <) (9)

We generate the inclination angle by randomly choosing from
the two-dimensional normal distribution, where both real parts and
imaginary parts center at zero, with the standard deviation based on
the number of planets in the system given by Zhu’s equation below
Zhu et al. (2018).

f� = 0.7( #
5
)−4 (10)

We then calculate the orbital frequency, l 9: , between planets j
and planets k based on the formulas below. < 9 and <: stands for
the mass of the two planets, while 0> is the semi-major axis of the
planets that far away from the sun, and 0< is the one that close to the
sun. The equations are given by Murray & Dermott (2000).

l 9: =
�< 9<:0<

02
>! 9

1
(1)
3/2 (U) (11)

where

! 9 = < 9

√
�"∗0 9 (12)

1
(=)
3/2 (U) =

1
2c

∫ c

0

cos(=C)
(U2 + 1 − 2U cos C)3/2

dC (13)

We then calculated the changing of inclination with respect to
the time of each two planets and sum up all pairs of planet-planet
interactions. For j-th planet,

d� 9
dC

=
∑
:≠ 9

l 9: (� 9 − �: ) (14)

Finally, we calculated the d1
dC based on the equation below.

d1
dC
=
0

'∗

����d�dC

���� (15)

We generate plenty of systems with different planet numbers, and
plot the histogram for each system, while all the graphs are pre-
sented in the appendix. We also calculate the number of planets that
obtained significant changing of impact parameters ( d1

dC > 0.1) for
each system. All of the data are presented in table 5.

In the table, the first column displays the number of planets in
each system, the second column stands for the total number of the
artificial system we have generated and simulated. The third column
means the total number of d1

dC generated in the simulation. The fourth
column means the percentile of d1

dC that has a value bigger than 0.1
per year.

We found the number of planets in the system (N) has a strong
exponential correlation, R-Squared equals to 0.9903, with the per-
centile of d1

dC that has the value bigger than 0.1 per year which is
given by the equation below.

d1
dC

% = 13.5889 · 0.7762# (16)

Moreover, we also generate the graph of d1
dC with respect to the mass

and period ofKepler Planets, which is shown in figure 2.We construct
an artificial two planets system in which the star mass and radius and
a default planet with five day period and three-earth mass. The tested
planets obtain mass ranging from two earth masses to three hundred
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Table 3. d1
dC distribution with the possibility of significance for various plan-

ets’ number system.

Model Multiplicity Distribution Relative Frequency

Zhu et al.(2018) # = 2 8.598%
Zhu et al.(2018) # = 3 6.108%
Zhu et al.(2018) # = 4 4.761%
Zhu et al.(2018) # = 5 3.806%
Zhu et al.(2018) #= 6 3.069%
Lissauer et al.(2011) # ∼ Pois(3) 2.016 %

Figure 2. | d1
dC | respect to the mass of the planets. This graph presented the

expected absolute value of d1
dC in the unit of the solar radius with respect to

the mass of the planets in the unit of earth mass with four different periods.
The colorful lines represent the results of different periods respectively.

Table 4. R Squared Value of Four Mass to ¤1 lines

Period R-Squared

5 1.0000
20 1.0000
30 0.99999
100 1.0000

masses with periods of five days, twenty days, thirty days, and one
hundred days respectively. The inclination angle is set at 2 degrees.
Finally, we calculate the best fit line for the four lines and express

the equation in terms of period and mass, which are presented below.

¤1 = 0.75
<

)
(17)

The R Squared values are shown in table 4.

2.4 Sample Selection

Theoretical SNR calculation reveals the signal of our model is di-
rectly proportionally to the planet star radius ratio, p, impact param-
eters, b, and ¤1, which is later proven in the Kepler modeling that
obtained an inverse relationship with the period of the planet, T, pro-
portional relationship with the mass of the planet, and more likely
exist in the system with less number of the planet, N. Due to the
reasons above, we selected the candidates that obtained planet-star
radius ratio bigger than 0.03, but less than 0.1 due to the constraints

of the limb darkening model that the light density from the star will
not change inside the planet. The period of the planets is smaller than
but has to be larger than in order to get enough data points for each
transit as the short cadence of the Kepler telescope is thirty minutes.
The mass of the planets is selected as larger than four earth masses.
Finally, all the candidates are in the system that obtained four or
fewer confirmed planets to increase the likelihood of the existence of
significance of ¤1. The relationship of SNR with impact parameter,
period, the mass of the planets, period, and the number of planets in
the system is presented below.

(#' ∝ (1, ?, <, 1
#
,

1
)
) (18)

3 MODEL

This chapter presents the detail of our model. 3.1 reveals the light
curve Detrending process for the raw flux from the telescope and
outlier removal. 3.2 demonstrates the parameters of the model and
the generation of the model light curve. 3.3 presents the production
of new parameters with the analysis of the accuracy with the detailed
process of the model and refit the light curve.

3.1 Light Curve Detrending

We download the original data from Kepler and conducted the poly-
nomial fitting for the light curve from the Kepler mission in order to
reduce the noise and remove the outlier. We first scan all the light
curves to locate the transit. We then calculated the relative time of
the transit. In the equation below, C̃ is the time in hours from nearest
transit, t means any data point from the time function, C0 is the transit
Epoch, and T means the period of the planet.

C̃ ≡ (C − C0 +
)

2
) mod () − )

2
) (19)

We extract the transit by blocking the transit and apply a third-
degree polynomial to fit the transit, and then divide the blocked-out
transiting part by the trend. After the third-degree polynomial, the
linear and quadratic equations are also applied.

In addition, we smooth the flux function by Savitzky–Golay filter.
The window of the Savitzky–Golay filter, integer W, is defined based
on the equation below, in which cad is the time difference between
each data point, the cadence of the transits.

, =

[
( 1
203
)2 + 1

]
(20)

The filter flux �̄, is generated by Savitzky–Golay filter based on
the window above with a three-degree polynomial. We then remove
iteratively all the data points in the original flux function, �>, that is 5
f away from filter flux, �̄, until no more outliers are detected. Then
the detrending flux function, F, is given by dividing the observed
signal with a smoothed version of the trend.

� =
�̄

�0
(21)

Assuming all the noise follows the gaussian distribution, we then
applied the savgol factor to suppress the effect of noise on the data
point. We weigh the value of the data point based on its distance
from the neighbor data points and set the weights following the
third-degree polynomial. We first set the window = 21. The savgol

MNRAS 000, 1–8 (2022)
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factor, SF, is given by the equation below, in which W is the window.

SF = 1 −

√
3(3,2 − 7)
, (,2 − 4)

(22)

We then scaled the standard deviation by savgol factor and get the
times function and the flux function.

3.2 Light Curve Generation

The light curve is generated based on seven variables: Transit Epoch
which means the center of the first detected transit in Barycentric
Julian Day (BJD) minus a constant offset of 2,454,833.0 days(C0),
the normalized impact parameters, b, which set into 0, the period of
the planet which came from the kplr module(T), the planet star radius
ratio, p, which approximated from Transit Depth, D, ? ≈

√
�

103 , the
two limb darkening parameter D1 and D2set into 0.5, and the density
of star, d which set into 1.

We then construct a vector composed of that seven variables and
named them as parameters which are indicated in the equation below.

®Θ =< C0, 1, ), ?, D1, D2, d > (23)

The star radius semi-major axis ratio, 0
'∗

, is approximated based
on the density of the star, d, and the period of the planet, T, where G
means the gravitational constant.

0

'∗
=

3

√
�)2d

3c
(24)

We then generate the normalized separation of the centers, z, as a
function of time.

I(C) =
√
12 + ( C − C0

)
2c

0

'∗
)2 (25)

After that, we generated the model light curve, �̄, by using the
equations below from the Agol Mandel and the batman package
from Laura Friedberg. I(u) is the brightness of the star as a function
of angle, and D = cos \ is the polar angle of location on the star, and
the function of u depends on the limb darkening.

D =
√

1 − A2 (26)

r is the normalized radial coordinate of the star and 0 ≤ A ≤ 1.
We assumed the planet is small enough that the no-limb darkening

takes effect inside the area of the planets, and the limb darkening of
the star follows the quadratic equation indicated below. Mandel &
Agol (2002)

� (D) = 1 − D1 (1 − D) − D2 (1 − D)2 (27)

The flux of the star �̄, with respect to normalized center distance, z,
planet star ratio, p, and time t is presented below. Mandel & Agol
(2002)

�̂ (I, ?, C) = 1 − ?
2�∗ (I)
4Ω

(28)

which

�∗ (I) = (4I?)−1
∫ I−?

I+?
� (A)2AdA (29)

and

Ω =
D1 + D2

6
− D2

8
(30)

3.3 Light Curve Modeling

This subsection introduced how we generated the new parameters
with the analysis of the accuracy after the model and refit the light
curve. The first part stated the statistical principle behind our opti-
mization. The second part demonstrates the new parameters gener-
ated by the model with and without the changing of impact parame-
ters after the removal of Transit time variation. The last part applied
statistical power to analyze the accuracy of the model with d1

dC .

3.3.1 Statistic Power

We intend to find the model that best explains the data from the
telescope. We apply the Bayes inference to find the probability of the
model we generated from

−→
Θ and given the presence of the data from

the Kepler telescope, %(model|data), which can be calculated based
on the equation below, in which � means the detrending flux from
the Kepler telescope and �̂ means the model flux generated by

−→
Θ

%(F|F̂(−→Θ , t)) = %(F̂(−→Θ , t) |F)%(F)
%(F̂(−→Θ , t))

(31)

We arrange the equation and obtained the following:

%(F̂(−→Θ , t) |F) = %(F|F̂(−→Θ , t)) · %(F̂(−→Θ , t)) · 1
%(F) (32)

The data from the telescopes are all constant and can not manipu-
late, thus P(F) is a constant. Because %(F|F̂(−→Θ , t)) is the prior, it
is reasonable to assume all underlying models are equally likely to
be generated, thus can be set equal to 1, which is also constant. Be-
cause of the reason above, %(F̂(−→Θ , t) |F) is directly proportional to
%(F|F̂(−→Θ , t)).
the formula of the log, the estimate came fromMLE,MLE is based

on the first derivate of the log likelihood, hessian calculate variance
We let L denoted the probability of data � given parameters

−→
Θ

and model �̂ (−→Θ , C)

! = %(F|F̂(−→Θ , t)) (33)

We assume the signal is only composed of the true signal and the
random noise. Because the noise is completely random, thus the
distribution is gaussian, thus the log ! can be obtained from the
equation below and named � (−→Θ). In this case, the input time func-
tion, C, means C̃ is the time in hours from nearest transit, which is a
constant. The equation is constraints under four conditions: |10 | < 1,
both of D1 and D0 > 0, D1 + D0 < 0, and 'G > 0.

� (−→Θ , C) = log ! (−→Θ , C) = −
∑ (�̂ (−→Θ , C) − �)2

2f2 (34)

in which the standard deviation of the flux, f, is given by

f =

√∑ | � − �̂ (Θ, C) |
=

(35)

For � (−→Θ) , minimized the square error (�̂ (−→Θ) − �)2 is the same
as maximizing log L. Therefore, the least square is the maximum
likelihood.

3.3.2 Optimization though TTV and TDV

We remove the effects of transit time variation by adding or subtract-
ing a certain number that the center of the transit is equal to 0 in

MNRAS 000, 1–8 (2022)
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"folded" time. To find the maximum likelihood of transit time vari-
ation, we defined another log probability function �C (

−→
Θ). The only

difference between �C (
−→
Θ) and � (−→Θ) is that the input time function

t, equals C̃+ TTV, in which TTV is a variable that needs to be fit.
We also define the equation for chi-square value for the model that

involves d1
dC , the impact parameters b(t) function respect to time is

given by

1(C) = 10 +
d1
dC
ΔC (36)

Thus the new vector, which we name
−→
Θ1 , obtained a new variable

¤1, compare with
−→
Θ as b is changing respect to time.

®Θ1 =< C0, 10, %, 'G , D1, D2, d, ¤1 > (37)

The corresponding Log probability function,�1 , is presented below

�1 ( ®Θ1 , C) = −
∑ (�̂ ( ®Θ1 , C) − �)2

2f2 (38)

We apply the basinhopping from scipy to find the global minimum
of �C (

−→
Θ , C) and its corresponding

−→
Θvalue and t value, named it

−→
Θ (1) and C (1) . We then consider the involvement of ¤1 and plug in
−→
Θ (1) into�1 . After the same process, we got

−→
Θ
(1)
1

and C (2) . We then

compare the model flux, �̂ (
−−−→
Θ
(2)
1
, C (2) ), with the actual flux from

Kepler telescope, �, and remove all the data points that obtain more
than 15 residuals from the predictedmodel.We applied basinhopping
again to refit the model after the outlier is removed with � and �1
separately and obtain

−→
Θ (2) and

−→
Θ
(2)
1

.

3.3.3 Accuracy

The fisher information of ®Θ1 is calculated by

� ( ®Θ1) = � [−
d2

d ®Θ1
2�1

(
®Θ1 , C

)
] (39)

Therefore, the difference of the estimating parameters between the
two models will form a normal distribution that centers at zero with
variance inverse proportional to the fisher information, ®Θ1 , via

√
=( ®Θ1 − ®Θ) → # (0, 1

� ( ®Θ1)
) (40)

The corresponding z-score of the difference, /Δ� is then computed
from the normal distribution presented within equation 1. Similarly,
the z-score of ¤1, / ¤1 is derived from equations above. Lastly, we
calculate the signal-to-noise ratio, , (A , from equation (15) from
Pont et al. (2006)

(A = U
1/2?2#1/2X1/2

C )−1/2f−1
3

(41)

with ? stands for the planet-star radius ratio, # is the number of
data points, XC is the short cadence time of Kepler telescope, ) is the
period of the planets, and f3 is the uncertainty that calculated within
equation 40. U is limb darkening parameters which we set into 1.
where Θ(2)

1
and Θ(2) from iteration 2.

4 DISCUSSION AND CONCLUSION

The stacked plot and folded plot of each planet were drawn based
on the data calculated above, in which each transit is represented by
the different color of data points, and the outliers of the transits are
represented by the cross.

Figure 3. Deterending Lightcurve for Koi 6187.01. The x-axis represents the
last of each transit in the unit of days, the y-axis represents the normalized
flux from the star. Every dot represents a data point from the Kepler telescope
and different colors marked the data points from different transit. The dark
lines are the best fit model for each transit.The outliers that are 5 f away are
marked as cross (x).

Figure 4. Deterending Lightcurve for Koi 6236.01. The x-axis represents the
last of each transit in the unit of days, the y-axis represents the normalized
flux from the star. Every dot represents a data point from the Kepler telescope
and different colors marked the data points from different transit. The dark
lines are the best fit model for each transit.The outliers that are 5 f away are
marked as cross (x).

4.1 Table of Candidates

We searched 3344 planets and we found planets koi 6187.01, koi
6236.01, koi 3627,01, 3659.01, and 5616.01 have a clear transit
shape. Among those, the system has demonstrated a clear Transit
Depth Variation. All of the statistics and data are provided in the
table below.

4.2 Discussion

Our research is focused on the application of impact parameters. The
distribution of d�

d1 could help future scientists to choose a possible
candidate in this method. We find there are five planets have signif-
icant long-term linear changes in impact parameters, which are koi
6187.01, koi 6236.01, koi 3627.01, koi 3659.01, and koi 5615.01.

MNRAS 000, 1–8 (2022)
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Figure 5. Deterending Lightcurve for Koi 3627.01. The x-axis represents the
last of each transit in the unit of days, the y-axis represents the normalized
flux from the star. Every dot represents a data point from the Kepler telescope
and different colors marked the data points from different transit. The dark
lines are the best fit model for each transit.The outliers that are 5 f away are
marked as cross (x).

Figure 6. Deterending Lightcurve for Koi 3659.01. The x-axis represents the
last of each transit in the unit of days, the y-axis represents the normalized
flux from the star. Every dot represents a data point from the Kepler telescope
and different colors marked the data points from different transit. The dark
lines are the best fit model for each transit.The outliers that are 5 f away are
marked as cross (x).

Table 5. The Statistical Significance of Satisfied Planets

Planet Num Data Points Num Transits /Δ� / ¤1 SNR

koi 6187.01 438 16 -17.1 11.77 13.96
koi 6236.01 300 20 11.3 13.11 80.53
koi 3627.01 259 32 17.2 23.34 244.89
koi 3659.01 124 13 12.9 10.39 58.27
koi 5615.01 212 6 11.7 19.48 126.59

Figure 7. Deterending Lightcurve for Koi 5619.01. The x-axis represents the
last of each transit in the unit of days, the y-axis represents the normalized
flux from the star. Every dot represents a data point from the Kepler telescope
and different colors marked the data points from different transit. The dark
lines are the best fit model for each transit.The outliers that are 5 f away are
marked as cross (x).

This process will allow us to increase the precision of their inclina-
tion, eccentricity, and mass, which is crucial for searching habitable
planets. We could also used the long term changes of planetary orbit
to suspect the existence of non-transit planets and partially resolve
the Kepler dichotomy.

The bulk of planets in the research has only been searched with
a long cadence due to computing power limitations. Therefore, we
suggest using a short cadence for better statistical significance and
more accurate parameters. For instance, we shouldn’t plot outliers
that are too far from the model and should only look for confirmed
planets, not all potential planets. To find the optimal parameters and
get rid of noise, we employ Bayesian inference and the log maximum
likelihood function in the study.For future studies, we recommend
applying more advanced model for light curve detrending, eg deep
learning, along consideration of polynomial fitting for impact param-
eters instead of an elementary linear approach.
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APPENDIX A: DERIVATION OF SNR EQUATION

�1 (G) is the flux function that regard ¤1 = 0, while the � (G) is the flux
function that treat ¤1 as a finite non-zero number. The independent
variable of the function is defined as I = 3

'∗
, which d means the

distance between the center of the planet and the center of the star,
and '∗stands for the radius of the star. G is ranged from -1 to 1.
At the first transit, two functions obtain the same result, and we
applied linear approximation to estimate �1 (G) after N orbits, which
is presented below.

�1 (I) ≈ � (I) +
d� (I)

d1
Δ1 (A1)

Δ1 is given by the equation below and #) means the completion of
the nth orbit which is also the number of transits and T is the orbital
period.

Δ1 = ¤1#) ) (A2)

The mean difference of �1 (G) and � (G),
〈
X�2〉, is given by the

equation below〈
X�2

〉
≈ 1
(G<0G − G<8=)

∫ G<0G

G<8=

( d� (G)
d1

Δ1)2dG (A3)

Plugging in the corresponding values, we get the equation below, and
p stands for the planet-star ratio.

≈ 1
2(1 + ?)

∫ 1+?

−1−?
( d� (G)

d1
d1
dC
)#) )2dG (A4)

The signal-to-noise ratio will be the sum of the difference of all data
points in the two models, which is given by the equation below.

SNR2 =
∑ (�1 (I) − � (I))2

f2
1

(A5)

Thef is relative to the cadence of we applied as an accuratemeasure-
ment means less variation of the data points, so we applied g

203
to

fix the value of f and obtained the equation below.

(#'2 =
〈
X�2

〉
· ( g
203
) · 1

2f2
1

(A6)

APPENDIX A: HISTOGRAM OF IMPACT PARAMETER
FOR MULTIPLE NUMBERS OF PLANET SYSTEM

If you want to present additional material which would interrupt the
flow of themain paper, it can be placed in anAppendixwhich appears
after the list of references.

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure A1. The histogram of d1
dC for two-planet system. The x-axis repre-

sented the value of ¤1 in the log 10 scale, and the y-axis represented their
relative frequency in the population.

Figure A2. The histogram of d1
dC for three planet system.The x-axis repre-

sented the value of ¤1 in the log 10 scale, and the y-axis represented their
relative frequency in the population.
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Figure A3. The histogram of d1
dC for four-planet system.The x-axis repre-

sented the value of ¤1 in the log 10 scale, the y-axis represented their relative
frequency in the population

Figure A4.The histogramof d1
dC for five planet system. The x-axis represented

the value of ¤1 in the log 10 scale, y-axis represented their relative frequency
in the population

Figure A5. The histogram of d1
dC for six planet system.The x-axis repre-

sented the value of ¤1 in the log 10 scale, the y-axis represented their relative
frequency in the population
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