
Draft version December 5, 2022
Typeset using LATEX twocolumn style in AASTeX63

Pipeline Progress Fall 2020

ABSTRACT

This paper overviews our progress this quarter developing a transient detection data pipeline which
employs both difference image subtraction and light curve analysis techniques to identify and categorize
transient light source candidates, specifically transients which are characteristic of directed energy
communications. I am one contributor to this large undergraduate effort spearheaded by Dr. Philip
Lubin. I will pay specific attention to what I have been integral to developing and how it relates to
our science objective of real time image processing.

1. INTRODUCTION

Many sections are adapted from our paper which will

tentatively appear in the literature as Local Galactic
Transient Survey Background. The Search for Extrater-
restrial Intelligence (SETI) seeks to discover extrater-
restrial communications using available communication

methods. Historically, this search has focused on ra-
dio frequencies, which were well understood as means of
communication when SETI efforts began in the 1960s.

Recent advances in laser technology suggest that lasers
may be an effective means of interstellar communication.
Thus, examining optical and near infrared frequencies

for laser communications is a natural extension of SETI
efforts, especially because few SETI searches have ex-
amined these frequencies.

While the optical and near-infrared (IR) frequencies

present many opportunities for SETI efforts, it also
presents a new set of challenges. The most significant
issue is that the optical and near-IR bands contain sig-

nificantly more noise, requiring more processing effort
to identify whether sources as intelligent.

In our pipeline, we adapt techniques used to iden-
tify naturally occurring transient sources, such as vari-
able stars and supernovae, to identify optical and near-
infrared directed-energy sources.

Before looking for a directed energy (DE) signal, we

must be able to describe and understand what we are
looking for so that we know when we have found it.
Lubin (2016) anticipates the possibility of civilizations
attempting to communicate by using DE signals and at-
tempts to quantitatively and qualitatively describe what
these signals might ”look like,” depending on the dis-
tance of the civilization and the development of their

technology. Lubin concludes that it is not unreasonable
for an extraterrestrial source to be detected at even vast

distances using modest searches. From a galaxy like An-
dromeda, the signal would appear to be a transient but
non-periodic (in human time scales) foreground point

source.
In particular, Lubin predicts that the apparent flux in

Wm−2 of a laser emitted from distance L is given by the

equation

F =
ξP

L2Ω
=
ξFeεc104S

4L2λ2
. (1)

Here, ξ = λ
hc for a given wavelength (λ), Plank’s con-

stant is h, and the speed of light is c. Power (P) =
Feεc102S , for a given solar illumination (Fe = 1400

W/m2), conversion efficiency of solar power to laser
power, εc, is effpv ∗ effde, and for a given civilization
of class S. Ω is solid angle and equals 4λ210−2S sr.

Furthermore, he finds that the flux for a given civi-
lization class, based on his definition, is

P

Ω
=
Feεc104S

4λ2
=

350εc104S

λ2
. (2)

Thus, assuming a class 4 civilization transmitting from
Andromeda galaxy (M31), we take S = 4, εc = 0.5
(also from Lubin’s paper), λ to be between 400 nm and
700 nm (optical wavelengths), and L ≈ 2.56 ± 0.08
Mly (McConnachie et al. (2004)). These values give
us an approximate upper and lower bound for the flux:
Flower = 2 ∗ 104 photons

m2s to Fupper = 4 ∗ 104 photons
m2s .

From these flux values and presuming an R band fil-
ter, a prospective magnitude for a signal from the An-
dromeda galaxy is 16, which is well within the seeing
capabilities of the our telescopes and the pipeline’s de-
tection ability. However we do not currently use filters
for our observations, so a source may be easier to ob-

serve. If we take M31 to have a uniform distribution,

2

Figure 1. Photon flux incident at Earth emitted by various
civilization classes at wavelength 1.06 µm. The solid blue
line is M31. The solid red line is Canis Major Dwarf and the
center of the Milky Way. The short dashed blue line is the
Large and Small Magellanic Clouds. The long dashed blue
line is Sagittarius Dwarf.

then its surface brightness is 22. Considering the pre-

dicted dwell time, any such source should be detectable

with the 0.4 meter telescopes we employ (other than

perhaps a source in the center of the galaxy).

Figure 1 summarizes the photon flux versus Civiliza-

tion class for intragalactic and some nearby intergalactic

galaxies.

Dwell time, τ , is the dwell time of laser on Earth and

is given by

τ =
2Lλ

10SVt
, (3)

where and Vt is transverse speed of the transmitter rel-

ative to Earth.

Again, taking a S = 4 civilization class in Andromeda

where the distance, L, is approximately 2.54±0.11 Mly.

Optical band wavelengths puts λ between 400 nm and

700 nm. A typical transverse speed according to Lubin’s

paper is Vt = 100km
s to 1000km

s .

Thus, the lower bound for dwell time is τmin = 2 ×
106s and the upper bound of dwell time is τmax = 4 ×
107s. A plot of dwell time versus distance for various

Figure 2. Spot dwell time vs distance. Lines plotted for
various civilization classes. Figure reproduced with permis-
sion from Lubin (2016).

civilization classes can be found in Figure 2. Given that

these bounds are orders of magnitude higher than our

science images, having between 10 s to 1000 s integration

times, it is quite feasible for our telescopes to capture

any such signals. Dwell time should only become an

issue with high-class civilizations in our own galaxy, as

it shortens with lower distances, shorter wavelengths,

and higher transverse velocities.

Lubin also predicts a signal to noise ratio (SNR):

S

N
=

FAετ

[N2
R + τn2

t]
1/2

. (4)

Here F is flux from target in γs−1m−2. Aε = AεQe is

the effective telescope area including transfer efficiency

and quantum efficiency in m2e−γ−1, where A is the

telescope area, ε is the telescope transfer efficiency, and

Qe(λ) is the quantum efficiency of the detector in e−γ−1.

τ is the integration time in s. NR is the readout noise

in e−.

Since nt =
√
FAε + iDC + FBAεΩ is the signal, dark

current, and background noise in e−s−1/2, we can

rewrite the above equation as:

S

N
=

FAετ

[N2
R + τ(FAε + iDC + FBAεΩ)]1/2

. (5)

Here Ω is the solid angle of pixel in sr. FB is the flux per

solid angle from all background sources integrated over

DaLEC Pipeline 3

Figure 3. Signal to noise vs distance for various apertures.
Using the scale for the 0.4m aperture, we can determine what
minimum civilization class can be detected for a given dis-
tance. The integration time only affects the noise not the sig-
nal in the intelligent targeting assumption. Our typical inte-
gration time per image is much shorter which makes the SNR
even higher. We use 1000 sec for the integration time here to
emphasize that even long integration (exposure) times yield
large SNR. See Time to SNR figure below for additional dis-
cussion.

bandwidth in (γs−1m−2sr−1). And iDC is the detector

dark current in e−s−1.

The term FAε in the denominator is noise produced

by the signal glow and should apply only if SNR is com-

puted relative to the pixel source. Thus, we can omit

this term reducing our equation to:

S

N
=

FAετ

[N2
R + τ(iDC + FBAεΩ)]1/2

. (6)

Therefore, the time for a desired SNR, τ , is

τ =
S2
Nn

2
t ±

√
S4
Nn

4
t + 4F 2A2

εS
2
NN

2
R

2F 2A2
ε

(7)

Now, letting Nt = [N2
R + τn2

t]
1/2 for the noise in e−, we

can rewrite:

τ =
S2
Nn

2
t

2F 2A2
ε

(
1 +

√
1 +

4F 2A22εN
2
R

S2
NN

4
t

)
(8)

Figure 3 summarizes the results of SNR as a depen-

dent of several apertures resulting in a scaling factor

that Noise has two components: readout noise and time-

dependent noise. For short integration times, readout

noise dominates, but, at longer integration times, the

time-dependent part dominates. The transition between

these two states occurs at transition time τc and is cal-

culated with the following:

τc =
N2
R

n2t
=

N2
R

FAε + iDC + FBAεΩ
=

N2
R

iDC + FBAεΩ
(9)

Figure 4. Time to SNR vs Luminosity Distance. For a
civilization class 4 laser, detection by a 0.4m telescope on
Earth for the desired SNR ratio in several nearby galaxies
falls within about 10 ms of exposure time.

From this paper, the Trillion Planet Survey (Stewart

& Lubin (2017)) was conceived, where 0.8m telescopes

from the Las Cumbres Observatory were used to look

for continuous wave lasers in the optical frequencies.

However, due to problems with its difference imaging

pipeline, this Trillion Planet Survey was not able to be

completed. Instead, we now present our improved and

verified methodology and pipeline in a new SETI type

survey.

2. METHODS

2.1. LCO Data Collection

Data is taken using the LCOGT network’s system of

0.4 m telescope arrays with a FOV of 29.2×19.5 arcmin

4

Brown et al. (2013). Observations are focused on the

Andromeda galaxy due to its large size, favorable rela-

tive angle, density of stars, and close proximity. Based

on our calculations in the previous section (1), we ex-

pect that a source from a class 4 civilization from this

galaxy would be around 16 magnitude or brighter. Thus,

we should expect that a source from a class 4 civiliza-

tion from this galaxy would be around 16 magnitude or

brighter. Thus, we should have a high probability of de-

tecting any such source, especially considering our mag-

nitude detection ability outlined in section 2.9. Since

LCOGT’s 0.4 m telescopes have a field of view of 19

by 29 arcseconds, we divided the galaxy into a mosaic

of observable sections, each of which spans the smaller

field of view depicted in Figure 5.

Focus is on the sectors of the mosaic containing the

galaxy as shown in the figure. Sample data for section

33, 38, and 32 can be seen in Figures 6, 7, and 8 respec-

tively. This sample of sectors show varying star density

of the tiled-mosaic M31 as we take images closer to the

center of the galaxy. Here section 38 is near the periph-

eral of M31, section 33 is nearer the center, and section

32 is the closest of the three to M31’s dense center.

Data for this project was historically collected in large

batches over a short period of time for all sectors of the

galaxy. We imaged batches of 3-5 sectors once approxi-

mately every 14 days, building a backlog of images over

consistent intervals so we can detect transients through

comparison of data taken over different parts of their

transit. To date, we have 5.3 Tb comprising over 35,000

images and are continuing to take more over these spec-

ified intervals.

Each observation request takes 100 images at a time

with 10 second integration times. These images are

taken without filters so detection of a transient in any

of the optical and near infrared wavelengths is possible.

Potential transient candidates can then be imaged with

filters to determine more details about the nature of the

transient.

In addition to M31, we are also imaging the Large

and Small Magellanic Clouds when M31 is not visible to

LCOGT since, by the same selection criteria as used for

Andromeda galaxy, these clouds are close targets with

a number of stars that can be easily imaged.

2.2. Broida Rooftop Observatory Data

In addition to LCO data, we are constructing an ob-

servatory atop the physics building (Broida Hall) to give

undergraduates hands-on experience aligning telescopes

and taking data. This observatory is built using hard-

ware generously donated by LCO along with automation

hardware and a low-cost tensor processing unit that can

Figure 5. Andromeda Mosaic: Sections of M31 imaged by
the LCOGT network’s 0.4m arrays are 7, 8, 11, 13, 14, 15,
16, 17, 21, 23, 24, 25, 26, 30, 31, 32, 33, 34, 38, 40, 41, 42,
and 47.

Figure 6. Section 33 of M31. Taken at the LCOGT node at
Haleakala Observatory on 2019 August 18 using an integra-
tion time of 100s. This image is the result of the raw image
applied to the LCO’s BANZAI pipeline and is typical of the
science images given to our DaLEC pipeline.

quickly process these 6280× 4210 pixel (26 Mpixel) im-

ages using our pipeline. Our QHY 268 has a lower an-

gular resolution with 3.88 arcsec2 pixels and larger pixel

count creating a much larger FOV of 3.4 deg×2.3 deg.

Due to the image size and un-optimized memory uti-

lization, GPU accelerated subtraction of a single QHY

images may require up to 60 Gb of VRAM which may

be prohibitive even to capable computing systems. This

constraint is currently being revised by Dr. Lei Hu at

the University of Science and Technology of China which

should drastically reduce VRAM utilization allowing low

DaLEC Pipeline 5

Figure 7. Section 38 of M31. Taken at the LCOGT node at
McDonald Observatory on 2019 October 18 using an integra-
tion time of 60s. This image is the result of the raw image
applied to the LCOGT network’s BANZAI pipeline and is
typical of the science images given to our DaLEC pipeline.

Figure 8. Section 32 of M31. Taken at the LCOGT node at
McDonald Observatory on 2019 July 19 using an integration
time of 100s. This image is the result of the raw image
applied to the LCOGT network’s BANZAI pipeline and is
typical of the science images given to our DaLEC pipeline.

cost tensor processing to be feasible. A full discussion

of this issue can be found in 2.3. If the memory opti-

mizations are insufficient, processing images in slices can

provide the remaining needed optimization. An intelli-

gent slicing algorithm that divides images into slices of

the correct size for the available hardware would allow

GPU subtraction of any n×m image with any amount of

VRAM. However, there is likely a decrease in the qual-

ity of results due to slicing since smaller images intro-

duce more edge effects, and may create alignment and

source detection problems. Therefore, our efforts have

currently focused on mitigating the need for this slicing

step which serves as a backup solution.

2.3. Difference Image Analysis

Figure 9. A raw image taken from the Broida Rooftop
showing Andromeda and Triangulum along with many back-
ground stars.

We use a variety of trusted astronomical science data

programs to create our differencing imaging pipeline us-

ing a Python framework. These include Source Ex-

tractor Python (SEP) (Barbary (2016), Bertin (2017)),

Optimal Image Subtraction (OIS) Adaptive Bramich

method (Beroiz et al. (2020), Miller et al. (2008)), As-

troalign (Beroiz et al. (2020)), NumPy (Harris et al.

(2020)), as well as the LCOGT network’s own BANZAI

pipeline architecture for image preprocessing and iden-

tification (McCully et al. (2018)). We give an overview

of our processing procedures in the flowchart in Figure

10 as well as in section 3.2.

The general structure of our pipeline is as follows. The

images are first taken using one of the LCOGT network’s

0.4m telescopes and then preprocessed according to their

BANZAI pipeline. Each of these science images are then

sent into our DaLEC (Differencing and Light Exposure

Curve) pipeline for further processing, which includes

difference image analysis and database cataloguing.

The DIA functionality of the DaLEC pipeline is com-

posed of four primary operations: Align, Combine, Sub-

tract, and Extract. These steps are diagrammed in Fig-

ure 10. LCOGT’s preprocessing and each of the four

steps will be discussed in turn.

2.4. LCO BANZAI Preprocessing

Preprocessing occurs in the LCOGT network’s inter-

nal BANZAI pipeline. Raw images taken from their ob-

servatories are run through a series of steps to produce

science quality images. The processes applied to the

images are overscan subtraction, gain, bias subtraction,

flat field correction, source detection, and astrometry.

See the LCOGT network’s documentation on BANZAI

for more detail (McCully et al. (2019)). Also, see Figure

11 for an example of a raw image from before it was run

6

through the BANZAI pipeline and compare to Figure 8

to see the changes preprocessing makes.

2.5. Broida Rooftop Preprocessing

After investigation the BANZAI pipeline with Joe

Politi, we decided the BANZAI pipeline was pro-

hibitively restrictive for our data. The BANZAI pipeline

expects images exactly as LCO creates them. Since it

is designed specifically for LCO data, it would require

writing a prepreprocesing step that reformats our data

to match BANZAI’s needs. This idea was dropped af-

ter the installation process took multiple hours and after

finding their documentation difficult to an outsider with

the idea that it is better to utilize and develope some-

thing we understand completely than adapt our work to

fit into a black box.

Figure 10. Flowchart of the DaLEC data pipeline. Science
(CCD) images are loaded into the pipeline as FITS files.
They are aligned using ASTROALIGN to a reference im-
age that is either picked automatically by the pipeline or
specified by the user, then combined into a template image.
Reference image analysis is performed and variable sources
are extracted using SEP. The subtracted images are stored
and the sources are put into our database with coordinates,
ellipticity, magnitude, and flux.

Figure 11. Raw image of section 32 of Andromeda before
the preprocessing step. Once the LCOGT network’s BAN-
ZAI pipeline has been applied, we obtain the image in Figure
8. Notice the removal of the dark spot circled in the raw im-
age as well as the increase in detail between the preprocessed
image and this raw image.

Figure 12. Help menu of the PITS preprocessing pipeline
showing how to invoke the pipeline with brief descriptions of
the read, alignment, and calibrate commands

Image processing via the DaLEC pipeline is very

straightforward as it can simply be evoked by typing

sdi into the command line, followed by the desired mod-

ules. Preprocessing was not command line integrated

and could not be done in this way. To select images
for the pipeline, the user had to manually write direc-

tory names into the scripts themselves. Utilizing click,

the directories can now be specified from the command

line itself. This has been a slow process of reverse en-

gineering a computer scientist’s uncommented code and

building my own model (Ronacher (2022)). After many

weeks of effort, I can now preprocess images entirely

from the command line. Shown below is the help menu

of the new pipeline I authored.

2.6. Image Alignment

In order to isolate differences over time through DIA,

science images must be positionally and photometrically

(see ??) aligned. We perform positional alignment by

using AstroAlign (Beroiz et al. (2020)), a Python pack-

age created for this purpose. AstroAlign deduces an ap-

propriate align transformation by identifying and com-

DaLEC Pipeline 7

paring asterisms in the reference image and in the image

to be aligned. The random sample consensus algorithm

(RANSAC) is applied to eliminate the influence of out-

liers and asterism mismatches. Finally, AstroAlign re-

turns a matrix transformation which is applied to the

science image to produce a positionally aligned image.

Figure 13 is an example of the image before and after

positional alignment.

To accelerate this process, we employed a multi-

processing approach. This allows multiple images to

be aligned in parallel, vastly accelerating the process.

While in theory this can accelerate processing by a fac-

tor of the number of CPU cores (72 for our hardware),

in practice we saw an increase by a factor of 10.

Figure 13. Single image of M31 section 24 that has only
gone through preprocessing in the BANZAI pipeline (a)
verses the same image after the align step (b). The small
vertical line on the right side of (b) is an artifact of our
alignment process.

2.7. Image Combination

Once the images are aligned, the pipeline moves on to

the combine step which combines all images in a single

input dataset (for which all images are of the same sec-

tion of the sky) thus forming a template image for later

use. The algorithm does this by extracting the value of

each pixel from all the input images, then taking the me-

dian of each pixel. The median pixel value is then used

as the value for the corresponding pixel in our template

image. This method creates a template image with a

substantially higher signal to noise ratio than using the

mean pixel value, as shown in Drake et al. (2009), which

is useful for later subtraction. See Figure 14 for an ex-

ample of the process.

Figure 14. Single image of M31 section 24 (a) versus a
combined image made from 100 single images (b)

2.8. Subtract

Before a science image and the template image can be

subtracted, they must be photometrically aligned. This

alignment is done by applying a convolutional kernel

to the better-seeing template image so that its point-

spread function matches that of the science image. The

appropriate convolutional kernel to use is identified by

applying optimal image subtraction techniques, which

vary kernel parameters to minimize the differences be-

tween the two images. We chose to use a space-varying

delta basis kernel as proposed in Miller et al. (2008).

We selected a delta basis kernel because of its in-

creased effectivity on real datasets as compared to Gaus-

sian basis kernels, as shown in Sánchez et al. (2019).

A space-varying application of the delta-basis kernel

is especially important for our uses, as many of our im-

ages contain elements of M31’s galactic structure, dra-

matically changing photometric conditions in different

regions of the image. A space-varying kernel is multi-

plied by a polynomial function of the pixel coordinate

that the convolution is applied to, allowing the kernel

to adapt to different photometries in different regions of

the image.

We implemented a space-varying delta-basis kernel

fit by using the Adaptive Bramich method in the OIS

Python package (Beroiz et al. (2020)). Because of the

large number of parameters that need to be fit and the

time-consuming convolution process, fitting an Adaptive

Bramich kernel took more than 40 minutes for one of

our 2042×3054 science images, with over 200,000 calls

to the multiply and sum convolution function. In or-

der to accelerate the process, we implemented portions

of the OIS package using the CUDA toolkit, allowing

it to be massively parallelized on Graphics Processing

Units. This brought the computing time for each image

down to about 10 minutes per image; long, but bringing

dataset turnaround times from weeks to days.

8

The Adaptive Bramich method still requires orders of

magnitude more computation time than spatially invari-

ant approaches such as the Bramich method. We found

that the increased efficacy of Adaptive Bramich more

than justifies the longer computation times required to

apply it.

Across the board, the residuals from images sub-

tracted using Adaptive Bramich have a lower stan-

dard deviation as well as mean that is closer to 0 in

all cases, but unsurprisingly more pronounced for im-

ages with larger amounts of galactic structure. In data

with minimal galactic structure, Bramich subtraction

yielded an average standard deviation of 16.8 compared

to an average standard deviation of 15.1 for Adaptive

Bramich. For data with low to moderate galactic struc-

ture present, the two subtraction methods produced av-

erage deviations of 41.99 and 35.04. In data contain-

ing galactic core, Adaptive Bramich produced better re-

sults having a standard deviation of 241.188 compared

to 247.89 for regular Bramich. These numerical val-

ues are representative of the outcomes for masked data.

Moving forward, the implementation of a more robust

point-source mask coupled with Adaptive Bramich will

improve the outcomes of the subtraction step of the

pipeline.

See Figure 15 for a visualization of the subtract pro-

cess on section 24 of M31 as well as 16 for the associated

histogram of the residual image. Comparing 16 to 17, we

can see that the former is a much better subtraction as

the residual noise takes on a much more Gaussian dis-

tribution with a tighter standard deviation and mean

value that is closer to 0. This result is characteristic of

all tests we have run comparing Bramich and Adaptive

Bramich.

2.9. SFFT Subtract

We implemented the SFFT image subtraction algo-

rithm developed by Dr. Lei Hu. To quote his work,

“SFFT uses δ-function basis for kernel decomposition,

and the image subtraction is performed in Fourier Space.

This brings about a remarkable improvement of compu-

tational performance of about an order of magnitude

compared to other published image subtraction codes.

SFFT can accommodate the spatial variations in wide-

field imaging data, including PSF, photometric scaling,

and sky background. However, the flexibility of the δ-

function basis may also make it more prone to over-

fitting. The algorithm has been tested extensively in

real astronomical data taken by a variety of telescopes.

Moreover, the SFFT code allows for the spatial varia-

tions of the PSF and sky background to be fitted by

spline function”Hu et al. (2022).

Figure 15. These are 3 images of M31 section 24 which
showcase the DaLEC data pipeline’s image subtraction. (a)
is a single image of the section from which the combined tem-
plate image (b) is subtracted to achieve the residual image
(c).

SFFT subtraction was written for “to use sep for ex-

tracting the sky background rapidly”. To utilize SEx-

tractor, we currently write out temporary fits files that

are deleted at the end of the pipeline. Subtraction using

SFFT is highly intensive on VRAM. Currently process-

ing 26 Mpixel images requires 60 Gb of VRAM. Our

chosen Jetsen Nano tensor processing unit has 4 Gb of

VRAM. Therefore, the memory requirements must be

reduced by a factor of 15 in order to make sfft subtrac-

tion of 26 Mpixel images possible without employing the

slicing techniques discussed in 2.2.

2.10. Extract

DaLEC Pipeline 9

Figure 16. Histogram showing the number of pixels (pixel
count) in the residual image from Figure 15 c with a given
flux intensity. The mean of this histogram is -3.47, standard
deviation is 22.01, and RMS is 3.48. Bin size is the calculated
signal to noise ratio of the image. Compared to Figure 17,
this histogram is markedly better in terms of symmetry and
closeness to a Gaussian distribution.

Figure 17. Histogram showing the number of pixels (pixel
count) with a given flux intensity for the same image as Fig-
ure 16 but subtracted with non-adaptive Bramich. The mean
of this histogram is 7.40, standard deviation is 24.34, and
RMS is 7.40. Bin size is the calculated signal to noise ratio
of the image. Compared to Figure 16, this histogram and as-
sociated residual is markedly worse. Notice the high degree
of asymmetry in the distribution.

From each subtracted image, residual sources are ex-

tracted using Source Extractor Python (SEP). We use

SEP rather than SExtractor because it works faster in

a pipeline, and the data types are easier to input into

our databases because it is a native python library. On

linear detectors, the value measured at each pixel is the

sum of a “background” signal and light coming from

the sources of interest. To detect faint objects and

make accurate measurements, the background is esti-

mated before source detection. In SEP, source detection

and background estimation are two separate steps (Bar-

bary (2016)). First, the subtracted residuals are passed

through the sep.Background() function, which carries

out background estimation by providing a representa-

tion of spatially variable image background and noise.

Then, the background subtracted data residuals are

passed through the .extract() function, which car-

ries out source detection and extraction. The minimum

threshold for pixel value is set to three times the mean of

the image background in order to reduce SNR (Barbary

(2016)). In the end, SEP creates a segmentation map,

which returns the member pixels of each object, as well

as a list of parameters associated with each source.

2.11. Section Identification

Since we have created an Andromeda mosaic (See fig-

ure 5) to overview and direct our Andromeda observa-

tions, this section identifier number is a useful HDU

to attach to each section. Thus, our pipeline’s option

SECID step will input the HDUL and return the HDUL

with an additional HDU found by comparing the RA

and DEC information to the section bounds defined in

our mosaic.

2.12. Light Curve Production

Alongside our efforts in automated transient detection

through DIA, we are actively developing a detection sys-

tem based on the automatic collection and analysis of

light curves. This method allows us to evaluate transient

candidates based on more detailed information about

changes over time rather than on a single subtraction.

We first calculate the magnitude of each star. We

convert the flux to magnitude by normalizing the fluxes

with respect to reference stars using Gaia DR3 data

(Kostrzewa-Rutkowska et al. (2018)). A set of reference

stars across all images are selected by excluding poten-

tial transient candidates found by subtract and querying

the Gaia DR3 database with the coordinates of the non-

variable sources. The instrumental magnitude of both

the reference and target stars are calculated using an

aperture photometry function based on the photutils

package. Source extractor calculates the position of

the centroids, and the radial size of each source. Then

photutils calculates the sum of pixels in that aperture.

The flux is then calculated by multiplying the sum by

the gain, which then gets converted to magnitudes.

The Gaia magnitudes for each of the reference stars

are converted from the Gaia g filter to the filter in which

10

images were taken (generally SDSS g’) using the pre-

scribed methods in Kostrzewa-Rutkowska et al. (2018).

Stars that are dimmer than 20th magnitude and stars

that are not present in every image are removed from

the reference star list. Then a linear fit between the

instrumental magnitude and Gaia magnitude for the re-

maining reference stars is taken to find the zero point of

the image. This zero point calibration is used to deter-

mine the magnitude of the target star in the accepted

frame of the sky. This is the magnitude then utilized in

constructing our light curves. The error in magnitude is

derived from the calculated error in flux due to photon

noise, background noise, and read noise in equations 10.

δM ≈ 1.086

g2

√
g(Nbackπ(FWHM/2)2 + 10−0.4Minst)

10−0.4Minst

(10)

Where Nback is an estimate of the background bright-

ness of the image before subtraction, FWHM is the

full width half maximum of photutil’s Gaussian kernel,

g is camera gain, and Minst is the instrumental mag-

nitude of the source. After the magnitudes and errors

are calculated, we use a Lomb-Scargle Periodogram al-

gorithm provided by astropy to find the period of peri-

odic sources, and finally phase fold using PyAstronomy’s

phase folding routine.

Light curve analysis will be performed on more data

obtained from our sources to identify and classify vari-

ables. The signal we are looking for is expected to be

of a short time period with a larger magnitude than the

background stars, so any such light curve should be eas-

ily distinguishable from variable stars. We do not plan

to narrow our parameters for our specific search pur-

poses, and will also analyze regular, and non-variable

sources. We propose to use the method described in

Moretti et al. (2018), as well as a method similar to the

one employed in VaST (Sokolovsky & Lebedev (2018)).

3. RESULTS

3.1. Preprocessing and processing speed

Before the integration of multiprocessed image align-

ment and GPU accelerated image subtraction, these

steps took an average of 11.6 and 21.1 seconds, respec-

tively, for 12 Mpixel LCO images. This resulted in a

time per image average of 35 seconds. After these two

changes, our pipeline now averages below 3 seconds for

12 Mpixel images. Assuming linear scaling, we expect

approximately 6.5 seconds to process a QHY image.

The time for preprocessing is currently 90 minutes per

1,000 images. This result of 5.4 seconds per images is

longer than we desire. However, no efforts have been

made to accelerate preprocessing at all. By simple mul-

tiprocessing, we expect to accelerate this process by a

factor of 10 (with the theoretical limit being 72, our

number of cores) as we saw for alignment. With these

projected optimizations, we are on track to meet our cri-

teria of 10 second image processing for Broida rooftop

data.

3.2. Subtraction Capability

Using characteristic star fields simulated by the

STUFF and SKYMAKER programs, We tested the low-

est magnitude that we can consistently detect by using

simulated images including transient sources through

the STUFF and SKYMAKER programs. We used the

STUFF program to create catalogs of stars and their

respective magnitudes and then used SKYMAKER to

generate a set images containing stars that aligned with

the catalogues created by STUFF. In order to test differ-

ent magnitudes, we generated images with and without

transients and ran them through our pipeline. As seen

in Figure 18, we found that our pipeline could detect

up to magnitude 19 stars with about 85% consistency.

These data strongly suggest that we would have a high

probability of detecting a Class-IV civilization’s directed

energy source originating in Andromeda, which we esti-

mate to have a magnitude of 16, as calculated in Section

1.

Figure 18. Graph showing the detection percent of tran-
sient sources in simulated images. Magnitudes were tested in
intervals of .1 magnitude for magnitude 17 to 22 transients.

Next, we calculated a false positive rate for identify-

ing transient sources this time using fully simulated im-

ages. To create the simulations, we used the Astromatic

software STUFF and SKYMAKER (Bertin (2009)) for

simulating full fields of stars, using similar methods as

in Sánchez et al. (2019). Finally, we compared the ex-

tracted sources to the locations of any inputted tran-

DaLEC Pipeline 11

Figure 19. Flowchart that presents how we simulated our
sets of 100 images for transient detection. We begin by creat-
ing our simulated images using STUFF to fabricate sources
which are then placed on a Gaussian noise background by
SKYMAKER with various S/N’s. Transient sources are also
created using STUFF and subsequently placed into one of
the simulated images by SKYMAKER. These images are
then run through our pipeline and the SEP catalog is com-
pared with the locations of the inputted sources. From the
discrepancies between these two lists, the F1 statistic is cal-
culated.

sients to determine a false positive rate for our pipeline.

See Figure 19 for a detailed chart of our method.
We chose to use the F1 statistic to measure the ac-

curacy of our pipeline. To determine this statistic, we

used the following formula:

F1 = 2TP /(2TP + FN + FP)

where TP is the number of true positives (sources

correctly identified as transients), FN is the number

of false negatives (transient sources not detected by

our pipeline), and FP is the number of false positives

(sources incorrectly identified as transients). As de-

scribed in Sánchez et al. (2019), the F1 statistic is ex-

tremely useful in weighing the effect between missing

transients and incorrectly identifying non-transient ob-

jects. We found the DaLEC pipeline in simulated test-

ing has an F1 statistic of .38, which is close to values

found in the Sanchez paper which found F1 statistics

between .37 and .55 in their testing.

(a)

(b)

Figure 20. Images demonstrating the background data ob-
tained using SEP on a image of section 24 of M31 run through
the pipeline.(a) represents the sep.Background().back, the
background noise of the image. (b) represents the RMS of
the background of the image.

3.3. Light Curve Results

We have early light curves, but are not satisfied with

the periodogram yet. 21 is the best light curve we have

produced compared to PTF.

4. CONCLUSION

In summary, the DaLEC pipeline is a new difference

image analysis pipeline and database for transient de-

tection with small telescopes. The project currently fo-

cuses on analyzing Andromeda galaxy due to its relative

proximity, large size, and brightness. Furthermore, it is

an ideal candidate for the detection of directed energy

sources.

We have been focusing on ensuring the pipeline de-

tects sources which match up with known transients and

plan on expanding to more methods of image analysis

and data collection. These will give a better picture of

what exactly the telescopes and pipeline are detecting.

12

Figure 21. A light curve produced by photometry via
scipy.curve fit with errorbars corrected via PTF terms

4.1. Future of the Project

4.2. Autonomous Data processing

With the existence of command line integrated pre-

processing and processing scripts, it is now possible to

autonomously process data. By writing bash scripts for

this task, we will automatically detect, preprocess, and

process new data from our observatory. In order to use

reliable templates, the image processing will trail the

telescope by an observing session, beginning to process

immediately after the last image is written and pausing

after outputting processed data since it will be able to

process all data before new data is available as desired.

4.2.1. Machine Learning

We are currently exploring the use of machine learning

and neural networks in an effort to use newer methods

obtain more accurate and streamlined transient detec-

tion.

In the future we plan on employing machine learn-

ing algorithms to identify and classify transients. To

test our pipeline we processed images containing the

GT And RR Lyrae variable star from the Intermedi-

ate Palomar Transient Factory ?. This star was chosen

as it lies within M31 and is bright enough to be eas-

ily detectable by our pipeline. We ran those images

through the pipeline, constructed the light curves, and

identified the sources using its RA and DEC coordinate.

There were a total of 367 transient candidates picked up

by the pipeline using the Bramich subtraction method.

We reconstructed the phase diagram from the catalog

file obtained from PTF’s databases, and compared the

phase diagram constructed from magnitudes found by

our pipeline, and a close match was achieved, indicating

that the pipeline was working as expected.

4.2.2. Multi Dichroic Imaging System

We are in the process of designing and building a multi

dichroic imaging system to image in several different fil-

ters simultaneously. This allows us to maximize data

collected per image and provides information about the

wavelength of the incident light, aiding in transient clas-

sification.

ACKNOWLEDGEMENTS

We would like to thank the undergraduates who

worked on this project before us. In addition, this work

makes use of observations from the Las Cumbres Ob-

servatory global telescope network, and we are grateful

for the support of the network and their generous allot-

ments of observing time.

Funding for this project comes from the UCSB Fac-

ulty Research Assistance Program, NASA grants: NIAC

Phase I DEEP-IN – 2015 NNX15AL91G and NASA

NIAC Phase II DEIS – 2016 NNX16AL32G, the NASA

California Space Grant (NASA NNX10AT93H), as well

as a generous gift from the Emmett and Gladys W.

fund.

REFERENCES

Barbary, K. 2016, Journal of Open Source Software, 1, 58,

doi: 10.21105/joss.00058

Beroiz, M., Cabral, J. B., & Sanchez, B. 2020, Astronomy

and Computing, 32, 100384,

doi: 10.1016/j.ascom.2020.100384

Beroiz, M., Sánchez, B., & Iyer, V. 2020, toros-astro/ois:

Version 0.2, v0.2, Zenodo, doi: 10.5281/zenodo.4042147

Bertin, E. 2009

—. 2017. https://readthedocs.org/projects/sextractor/

downloads/pdf/latest/

Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013,

PASP, 125, 1031, doi: 10.1086/673168

Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009,

Astrophysical Journal, 696, 870,

doi: 10.1088/0004-637X/696/1/870

Harris, C. R., Millman, K. J., van der Walt, S. J., et al.

2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2

Hu, L., Wang, L., Chen, X., & Yang, J. 2022, The

Astrophysical Journal, 936, 157,

doi: 10.3847/1538-4357/ac7394

http://doi.org/10.21105/joss.00058
http://doi.org/10.1016/j.ascom.2020.100384
http://doi.org/10.5281/zenodo.4042147
https://readthedocs.org/projects/sextractor/downloads/pdf/latest/
https://readthedocs.org/projects/sextractor/downloads/pdf/latest/
http://doi.org/10.1086/673168
http://doi.org/10.1088/0004-637X/696/1/870
http://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.3847/1538-4357/ac7394

DaLEC Pipeline 13

Kostrzewa-Rutkowska, Z., Jonker, P. G., Hodgkin, S. T.,

et al. 2018, Monthly Notices of the Royal Astronomical

Society, 481, 307, doi: 10.1093/mnras/sty2221

Lubin, P. 2016, Reviews in Human Space Exploration, 58,

doi: 10.1016/j.reach.2016.05.003

McConnachie, A., Irwin, M., Ferguson, A., et al. 2004,

Monthly Notices of the Royal Astronomical Society, 356,

doi: 10.1111/j.1365-2966.2004.08514.x/abs/

McCully, C., Turner, M., Collom, D., & Daily, M. 2019,

BANZAI Documentation.

https://banzai.readthedocs.io/en/latest/

McCully, C., Turner, M., Volgenau, N., et al. 2018,

LCOGT/banzai: Initial Release, 0.9.4, Zenodo,

doi: 10.5281/zenodo.1257560

Miller, J. P., Pennypacker, C. R., & White, G. L. 2008,

PASP, 120, 449, doi: 10.1086/588258

Moretti, M. I., Hatzidimitriou, D., Karampelas, A., et al.

2018, Monthly Notices of the Royal Astronomical

Society, 477, 2664, doi: 10.1093/mnras/sty758

Ronacher, A. 2022, Click Documentation. https:

//click.palletsprojects.com/en/8.1.x/#documentation

Sánchez, B., Domı́nguez R., M. J., Lares, M., et al. 2019,

Astronomy and Computing, 28,

doi: 10.1016/j.ascom.2019.05.002

Sokolovsky, K., & Lebedev, A. 2018, Astronomy and

Computing, 22, 28–47, doi: 10.1016/j.ascom.2017.12.001

Stewart, A., & Lubin, P. 2017, SPIE, 61,

doi: 10.1117/12.2286945

http://doi.org/10.1093/mnras/sty2221
http://doi.org/10.1016/j.reach.2016.05.003
http://doi.org/10.1111/j.1365-2966.2004.08514.x/abs/
https://banzai.readthedocs.io/en/latest/
http://doi.org/10.5281/zenodo.1257560
http://doi.org/10.1086/588258
http://doi.org/10.1093/mnras/sty758
https://click.palletsprojects.com/en/8.1.x/#documentation
https://click.palletsprojects.com/en/8.1.x/#documentation
http://doi.org/10.1016/j.ascom.2019.05.002
http://doi.org/10.1016/j.ascom.2017.12.001
http://doi.org/10.1117/12.2286945

14

5. APPENDIX: PYTHON CODE

5.1. setup

setup.py enables the pipeline to be installed via pip3 so it can be evoked from the command line. The setup script

installs all necessary packages optimized for a minimal size virtual environment.

from setuptools import setup , find_packages

import subprocess

import sys

’’’

try:

import numpy

except ModuleNotFoundError :

import sys

sys.exit (" numpy not found , pits requires numpy for installation .\n Please try ’$pip3 install

numpy ’.")

try:

import setuptools_rust

except ModuleNotFoundError :

import sys

sys.exit (" setuptools_rust not found , pits requires setuptools_rust for installation .\n Please

try ’$pip3 install setuptools_rust ’.")

’’’

subprocess.run(sys.executable + " -m pip install --upgrade pip setuptools ==56.0.0 setuptools_rust

numpy", shell=True)

setup(

name="pits -cli",

version="0.99",

py_modules=["pits"],

packages= find_packages (include =[" openfits "]) ,

include_package_data=True ,

install_requires=["click", "astropy", "astroalign"],

entry_points="""

[console_scripts]

pits=pits._cli:cli

""", #Names the pipeline pits and invokes the cli command in pits._cli

)

5.2. init

init .py initiates the pipeline by pointing click to all modules that are part of the pipeline. Modules not in the

script are not passed to the pipeline.

import os

from .fitsio import read

from .alignment import alignment

from .calibrate import calibrate

#from .stack import stack

#from . import test

from .fitsio import read_cmd as _read_cmd

from .alignment import alignment_cmd as _align_cmd

from .calibrate import calibrate_cmd as _calibrate_cmd

#from .stack import stack_cmd as _stack_cmd

5.3. Alignment script with click

import click

import os

import glob

import astroalign

import numpy as np

DaLEC Pipeline 15

import time

import re

from astropy.io import fits

from . import _cli as cli

timestart = time.time()

def alignment(hduls , name):

try:

data = hduls[name].data

except KeyError:

data = hduls["PRIMARY"].data

reference = np.nan_to_num(hduls[0][0].data[:-35, 40:-4], copy=True , nan=0.0, posinf=None , neginf

=None)

for i, hdul in enumerate(hduls):

#with fits.open(path) as hdul:

data = data[:-35, 40:-4]

timestart1 = time.time()

try:

print(’Byte order not swapped.’)

output = astroalign.register(data , reference)[0]

hdul[’PRIMARY ’].data = output # writing aligned data to hdu

print(f’frame {i} aligned in {time.time()-timestart1}’)

except (ValueError): # Catches byteorder error

print(’Byte order swapped.’)

output = astroalign.register(

hdul[’PRIMARY ’].data.byteswap ().newbyteorder (),

reference , min_area=10)[0]

hdul[’PRIMARY ’].data = output # writing aligned data to hdu

print(f’frame {i} aligned in {time.time()-timestart1}’)

print(’Aligned in :’, time.time()-timestart , ’ seconds\n’)

return hduls

@cli.cli.command("alignment")

@click.option("-n", "--name", default="SCI", help="The HDUL to be aligned")

@cli.operator

def alignment_cmd(hduls , name="SCI"):

"""

rotates frames and preprocessing image alignment

"""

return alignment([hduls for hduls in hduls], name)

5.4. Calibrate Script with click

import click

import os

import glob

import numpy as np

import time

from astropy.io import fits

from . import _cli as cli

Function returns master bias frames for correcting images.

def bias(bias_path , output_path=None , read_ext=’Primary ’):

timestart = time.time()

bias_images = []

for i, img in enumerate(bias_path):

with fits.open(img) as frame:

bias_images.append(frame[read_ext].data)

16

print(’bias: ’,i)

main_bias_data = np.median(np.array(bias_images), axis=0)

print(’master bias created in :’, time.time()-timestart , ’ seconds\n’)

main_bias = fits.PrimaryHDU(data=main_bias_data)

if output_path is not None:

MBpath = os.path.join(output_path ,’main_bias ’)

os.makedirs(MBpath)

main_bias.writeto(MBpath , overwrite=True)

return main_bias

def dark(dark_path , output_path=None , read_ext=’Primary ’):

timestart = time.time()

dark_images = []

for i, img in enumerate(bias_path):

with fits.open(img) as frame:

exptime = frame[0].header[’EXPTIME ’]

dark.append(

np.divide(

np.subtract(

frame[read_ext].data ,

bias.data),

exptime)

)

print(’dark: ’,i)

print(’Combining ...’)

dark = np.median(np.array(dark), axis=0)

main_dark = fits.PrimaryHDU(data=dark)

print(’master Dark created in :’, time.time()-timestart , ’ seconds\n’)

if output_path is not None:

MDpath = os.path.join(output_path ,’main_dark ’)

os.makedirs(MDpath)

main_bias.writeto(MDpath , overwrite=True)

return main_dark

def flat(bias_images , dark_images , output_path=None):

timestart = time.time()

flat = []

for i, img in enumerate(flatimages):

with fits.open(img) as frame:

exptime = frame[0].header[’EXPTIME ’]

double subtract here

flat.append(np.subtract(np.subtract(

frame[’Primary ’].data , (dark.data * exptime)),

bias.data))

flat[i] /= np.median(flat[i]) # check this step

print(’flat: ’,i)

flat = np.median(np.array(flat), axis=0)

main_flat = fits.PrimaryHDU(data=flat)

print(’master Flat created in :’, time.time()-timestart , ’ seconds\n’)

if output_path is not None:

MFpath = os.path.join(output_path ,’main_flat ’)

os.makedirs(MFpath)

main_bias.writeto(MFpath , overwrite=True)

return main_flat

does a function need to return anything? I could return all hduls in a list.

def calibrate(hduls , bias_images , bias_path , dark_images , dark_path , output_path , read_ext):

"""

Parameters

write_to_disk : Bolean

Option to write output to disk. If true , writes to specified location.

Returns

hduls_list_CAL : List

DaLEC Pipeline 17

A list of hdul ’s with the calibrated fits data writen to the primary hdu

"""

timestart = time.time()

Ensure that files are sorted by the index in file name.

sciimages = sorted(sciimages)

Calls main bais functions and unpacks tupple return

main_bias = bias(bias_images , output_path , read_ext)

main_dark = dark(dark_images , output_path , read_ext)

main_flat = flat(bias_images , dark_images , output_path)

for i, img in enumerate(sciimages):

with fits.open(img) as hdul:

print(’calibrating: ’,i)

exptime = hdul[read_ext].header[’EXPTIME ’]

bias_apl = np.subtract(hdul[read_ext].data , main_bias.data)

bias_dark_apl = np.subtract(bias_apl , main_dark.data * exptime)

sci = np.divide(bias_dark_apl , masterflat.data)

hdul[read_ext].data = sci

if output_path is not None:

Calpath = os.path.join(output_path ,’Cal’)

os.makedirs(Calpath)

main_bias.writeto(Calpath , overwrite=True)

print(’Images calibrated in:’, time.time() - timestart , ’ seconds\n’)

return hduls_list_CAL # Returns list of hdul ’s

@cli.cli.command("calibrate")

@click.option(’-b’, ’--bias_path ’, type=str , help="Specify path to directory of fitsfiles.",

required=False)

@click.option(’-d’, ’--dark_path ’, type=str , help="Specify path to directory of fitsfiles.",

required=False)

@click.option(’-w’, ’--output_path ’, type=str , help="Specify path to directory to save preprocessing

fitsfiles.", default="./")

@click.option(’-r’, ’--read_ext ’, default=’Primary ’, help="The HDU extension to be aligned.")

@cli.operator

def calibrate_cmd(hduls , bias_path , dark_path , output_path=None , read_ext=’Primary ’):

"""

calibrates the image with bias images and flatfielding

"""

if bias_path is None:

try:

bias_path = askdirectory ()

except:

click.echo("Visual file dialog does not exist , please use option -d and specify path to

directory to read fitsfiles.", err=

True)

sys.exit()

if dark_path is None:

try:

dark_path = askdirectory ()

except:

click.echo("Visual file dialog does not exist , please use option -d and specify path to

directory to read fitsfiles.", err=

True)

sys.exit()

hduls = calibrate(hduls , bias_path , dark_path , output_path=None , read_ext=’Primary ’)

if hduls:

return hduls

else:

sys.exit(f"Could not open fitsfiles from directory {directory}")

	Introduction
	Methods
	LCO Data Collection
	Broida Rooftop Observatory Data
	Difference Image Analysis
	LCO BANZAI Preprocessing
	Broida Rooftop Preprocessing
	Image Alignment
	Image Combination
	Subtract
	SFFT Subtract
	Extract
	Section Identification
	Light Curve Production

	Results
	Preprocessing and processing speed
	Subtraction Capability
	Light Curve Results

	Conclusion
	Future of the Project
	Autonomous Data processing
	Machine Learning
	Multi Dichroic Imaging System

	Appendix: Python code
	setup
	__init__
	Alignment script with click
	Calibrate Script with click

