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I Introduction

The same way that the moon rotates around the earth, and the earth rotates around the sun, so
do other systems rotate around each other. A system of two stars in rotation around each other
constitutes a binary star system. This system contains two stars which orbit around each other in
accordance with a gravitational pull towards the center of their mass. Depending on angle of viewing,
amidst other things, an eclipse between the stars can be observed. One way to observe this eclipse is to
measure the change in magnitude as one star crosses over the other[1]. When this happens, the orbiting
star blocks some light from the other star, and allows measurements to be made surrounding orbit,
mass, etc. These are called eclipsing binary stars.

Historical Background

The amount and variety of binary star systems is appreciably large. In fact, up to 85% of stars
are part of binary systems, or higher [2]. Of these systems, there are multiple classifications of binary
stars. These include visual binaries, spectroscopic binaries, eclipsing binaries, astrometric binaries, and
‘exotic’ types. Eclipsing binaries are defined by their ability to be observed through their apparent
magnitude, as mentioned earlier. The first detection of an eclipsing binary was “Algol, β Perseus”, or
“Demon Star” [3]. This discovery was made by Goodericke in 1782, following the first binary star in
general made by J. B. Riccioli around 1650, not long after the construction of the first telescopes. At
first, people (such as I. Newton) thought that the stars could be part of these binary star systems, but
this idea was written off due to lack of evidence. Instead, ideas such as differential parallaxes were
considered, but disproven. In demonstrations based on binary stars, W. Herschel showed this idea of



mutual attraction within a physical system, which is regarded as the first observational evidence of
Newton’s Law of Gravitational Attraction [4].

Importance

A visual binary star can be analyzed through a light curve. By taking the apparent magnitudes
of the system over a time interval, and plotting these values as a function of time, the eclipse of the
system can be found. In a full set of data, a light curve should show the primary eclipse, of the
secondary star overlapping the primary star, and the secondary eclipse, of the primary star overlapping
the secondary star [3]. By creating a light curve showing these peaks in apparent magnitude, the orbit
of the system reveals valuable information about the size of the stars, and the masses [5]. In a more
general sense, visual binary stars also represent a simple, yet complex system of a mutual gravitational
pull towards a shared central mass. It is interesting to utilize the Gravitational force equation without
one mass being large enough to neglect the other, as is the case with how we treat the gravity between
Earth and our daily objects.

II Instrumentation and Methods

Choosing our Star System

Of the varieties of binary star systems, an eclipsing binary star system has a lot of practical
benefits, in the sense that we would only need to calculate apparent magnitudes as a function of time,
and avoid the distortion of masses that occurs in other systems. In order to choose an eclipsing binary
star system, we first had to decide what requirements we were looking for, based on our parameters. In
terms of instrumentation, we could request data through the Las Cumbres Observatory, where we had
access to filters with wavelength centers ranging from ~3000-10,000 Å [6]. We also had a time
constraint, as our data collection needed to take a maximum of a couple weeks. In an effort to get the
most concentrated and full set of data given these constraints, we decided to find a star system which
was within a magnitude of 9-12 kmag, with a period of 24 hours or less. This way, the magnitude of
the star system is in the right range of magnitude for the instruments we were using, and the time
period is one which allows us ample time to analyze the data, and request more if needed. In order to
find this star system, we used the website ‘Kepler Eclipsing Binary Catalog - Third Revision’ [7], and
gathered some potential star systems. Once we had some options, we had to take visibility into
account. Using the ‘Visibility Tool’ on the Las Cumbres Observatory website, we entered the target



coordinates to see the visibility on the LCO network for both seasonal and daily visibility [8]. Upon
fulfilling all of the previous criteria, the star system we decided on has KIC number 3833859, with an
RA of 285.8739 and a DEC of 38.9039 [7].

Methods

In order to obtain images of our star system, we sent in a request (through the TA) who sent
the request to the Las Cumbres Observatory. Using the same visibility feature on the LCOwebsite [8],
we found that the best filter for our star system is the SDSS g' filter. This is a standard filter on LCO’s
2, 1, and 04 meter telescopes. The wavelength center associated with this green filter is 4770 Å. By
choosing this filter, we were able to boost contrast between the wavelengths coming from our star, and
from the background noise. We added this filter to our request sheet, along with the RA and DEC.We
requested 4 exposures, with an integration time of 12 seconds. We chose to get 4 shutter photos so that
we could average a magnitude over more than just one photo, and get more accurate magnitudes.
Lastly, we listed that the expected period of our star system was around 9 hours, within which we
wanted 5 sets of photos. We received data from around 3 hours, and requested more data with the same
filter, but over the course of 24 hours.

Our methods for analyzing our data are as follows. We ultimately had two sets of data- one
with closer spaced intervals, but a shorter overall period, and one with a longer interval with data
spaced far apart. Specifically, we had a set of data that contained 5 points with 4 photos each over the
course of around 3 hours, and a set of data that contained 14 points with 2 photos each over the course
of 24 hours. We received these photos in .fitz format, and converted them all to .fits files. We used the
application ‘SAOImage DS9’ to get the timestamp of each photo. In order to get the most accurate
time stamp, we used the start time for the first photo in a set point, and the end time for the last set
point and averaged the time. We obtained values of uncertainty for our time values by taking the
smallest unit the timestamp of each photo went to.

Each photo we received came in pair with its raw image and its BANZAI processed image. We
chose to use the BANZAI processed images as opposed to the raw images for their enhancing
calibrations which will be discussed further in instrumentations.

For each data point, we utilized the application ‘Astroart 8’ to locate our star system, combine
each photo in set, and obtain magnitude values. This meant using the Star Atlas tool on Astroart to
locate our star. We relied on The European Space Agency’s ‘GAIA’ map to locate our star. We used the
brightest reference stars in our photos to match our photos with GAIA’s map, which provided us with



coordinates for our photo. This way, we could find our star based on its known coordinates. Once we
located our star, we aligned and combined all photos in a data point together to get an average
magnitude. At first, we planned on manually averaging the pixel luminosity from the cluster of pixels
that composed the star [Figure 1]. Ultimately, we found it to be more consistent to rely on Astroart’s
magnitude for our star instead.

Once we had our time stamps and magnitudes, we were able to make our light curve. As we
had two sets of data, we created two light curves, one a more zoomed in (time-wise) version of the
other. I chose to use python to plot these graphs via Jupyter Notebook on Anaconda. I exported a tsv
file with the x column representing the timestamps in units of seconds, shifted so that the first data
point was at 0 seconds. The y column represented the apparent magnitudes for each timestamp. I
imported this tsv file into my code, along with the packages numpy and matplotlib.pyplot. I also
included the uncertainty for each column using the following formula for signal to noise ratio:
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From these light curves obtained, we were hoping to piece together a general orbital period for
the eclipsing binary stars from quantitatively observing the rise in the light curve. However, there are
too many missing factors which we would need and do not have to be able to do this. Essentially, we are
getting a timeframe for one star completely overlapping the other, but we would need to know speed,
mass, radius of separation, or other things to be able to plug this into an equation. Instead, we focused
on finding the transient moment of the eclipse; being able to identify it from our data and make
assumptions based off of it. Further, using the known orbital period as reference, I found what fraction



of the full orbit my data constituted, and pieced things like field of view together. Figure 10 shows a
drawing of how this would work.

[Figure 10] Schematic diagram of what my data would represent. Calculating the field angle that we
can view the star.

Lastly, in an effort to expand past our goal of identifying the transient event from a light curve,
we wanted to see the effect of different filters on our image data. Our goal was purely to provide
supplemental data to our project, in the form of qualitative analysis between the filter our light curves
were based off of, and other options of filters. In particular, we requested data for the red and blue
filters. These corresponded to wavelength centers of 6407Å and 4361Å respectively. The images can be
found below in Figure 5 and Figure 6, respectively. Doing this additional step contributed to our main
goal by providing us with some insight into the effect that our filter choice may have had on our final
data sets.

Instrumentation

The telescopes used to take the images of our photos are from the Las Cumbres Observatory.
They have 25 telescopes around the world, which allows data to get moved around to different sites,
providing fuller and more consistent data. These 25 telescopes operate as a ‘single instrument’. These



instruments were all built by LCO and work day and night. The 0.4 meter diameter telescopes in
particular are modified Meade telescopes with the following properties. The mounting is composed of
‘Meade 16-inch (40cm) RCS tube and 3-element optics, mounted in LCO equatorial C-ring
mounting’, while the optics operate with ‘Primary, secondary and Corrector plate (Meade) with LCO
focus mechanism driving corrector plate/secondary’. The cameras on this telescope are the SBIG
STL-6303, formatted with a 3Kx2K 9-micron and a cycle time of 14 seconds [9].

The BANZAI processed images are a result of raw images being processed through LCO’s BANZAI
pipeline, which comes from image processing algorithms from the 2014 Global Supernova Project
team. It is coded in Python and runs automatically. The calibrations which it performs on raw images
are: “Bad-pixel masking, Bias subtraction, Dark subtraction, Flat field correction, Source extraction
(using SEP, the Python and C library for Source Extraction and Photometry), and Astrometric
calibration (using astrometry.net)” [10].

III Results

Summary of Images

We received two sets of data; one with 5 data points each containing 4 photos over 3 hours
(Data Set 1), and one containing 14 data points each containing 2 photos over 24 hours (Data Set 2).
Photos from Data 1 looked similar across data points, while photos from Data 2 varied as a result of
some photos being taken during the day. Discrepancies within each Data Set included receiving raw
versus BANZAI processed images, which we overcame by being consistent in using the processed set of
images. In addition, photos of the red and blue filter photos are shown for contrast against our
dominantly green filter data.



[Figure 1] Green filter, Data Set 1, unprocessed. Labeled with the star system we measured, this is a solo
image, not combined with other photos at the same time. This is the raw version of Figure 2. The only
edits done involve adjusting contrast and brightness to more easily make out the stars.



[Figure 2] Green filter, Data Set 1, BANZAI processed. Labeled with the star system we measured, this
is a solo image, not combined with other photos at the same time. The only edits done in addition to
the BANZAI processing involve adjusting contrast and brightness to more easily make out the stars.

[Figure 3] A closeup of the pixel values for a given shot of our star system fromData Set 1 with green
filter. This is a photo of the pixels after combining the four photos into one. As expected, the numbers
in the center are the maximum and the values surrounding it fall off with radius. Averaging these
numbers was our first option to calculate magnitudes. We realized that this would lead to multiple
uncertainties that could be avoided in just allowing AstroArt to calculate our magnitudes.



[Figure 4] This is an image of one of the less visible photos fromData Set 2. In some cases, these were
too faint for Astroart to register, but after combining the two photos together, it was able to detect it.

[Figure 5] Red filter, Data Set 1, BANZAI processed. Images are sharp, and the contrast is more than
acceptable.



[Figure 6] Blue filter, Data Set 1, BANZAI processed. Images are faint, and contrast is not as strong as
green or red filters.

Data Analysis

Our data proved to be much more accurate with Data Set 1 as compared to Data Set 2.
Focusing first on Data Set 1, our data of time to magnitude is displayed in Figure 7. This table also
outlines an uncertainty calculated using the signal to noise ratio mentioned earlier. This uncertainty
uses the following variables taken from the headers of our .fits files and other information from the
LCOwebsite [9].
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02:11:36.629 0 0.001 10.39 0.108

03:06:19.115 3282.485 0.001 10.39 0.108

04:56:11.7575 9875.1265 0.001 10.62 0.108

04:16:5.7265 7469.0945 0.001 10.58 0.108

05:26:12.006 11675.373 0.001 10.21 0.108

[Figure 7] Table of time to magnitudes, along with uncertainties of both. The units for time do not
really matter, as our analysis deals with differences in time across data points.

Ultimately, we obtained a light curve shown in Figure 8. This was a result of plotting the points
of magnitude and time, and setting a cubic curve to it.



[Figure 8] Light curve plotting magnitude to time for Data Set 1. The error bars are a significant
percentage of the graph.

From Figure 8, we can see there is a clear peak in magnitude, which is what we were looking
for, yet it dips below its original base value after the peak. When taking into account the extent of the
uncertainty, this graph makes more sense. If we were to disregard this last data point, we can treat the
peak shown as the eclipse of the binary star system. Treating the distance from the first minimum to
the maximum of the peak as half of the period, the period of the front orbit can be obtained. The first
minimum takes place at t = 1600 seconds, and the maximum at t = 9500 seconds. The time difference
between these two values is:

∆𝑡 =  9500 −  1600 =  7900 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
This accounts for part half of the front eclipse period, which means that the full period of the front
eclipse can be found with:

𝑡 = 7900 ×  2 =  15800 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =  4. 38 ℎ𝑜𝑢𝑟𝑠
This period of 4.38 hours only shows us the time it takes for the star to eclipse around one part of the
bigger star- in other words, these 4.38 hours only represent one part of the full orbit of the system.
Therefore, we can obtain a more complete period of orbit of the star system by multiplying it by some
constant:

𝑇 =  4. 38ℎ𝑜𝑢𝑟𝑠 ×  2 =  8. 76 ℎ𝑜𝑢𝑟𝑠
or

𝑇 =  4. 38ℎ𝑜𝑢𝑟𝑠 ×  3 =  13. 14 ℎ𝑜𝑢𝑟𝑠



We can say, hypothetically, that the orbit is somewhere between these two values. To average them out,
we would get a potential period of orbit of 10.95 hours.

This is a rough way to calculate the orbit, but by comparing it to the accepted value of the orbital
period, we can derive some other relationships. The accepted orbit period for the star system we chose
(KIC 3833859) has an accepted period of 0.4317433 days, or 10.36 hours [7]. This means that the
portion we calculated is anywhere from ⅓ to ½ of the full orbit. Specifically, we can show that our
calculated eclipse is 0.4228 of the full orbit. If we assume the eclipse is circular, this means that the total
orbital period would be the time it takes to go a distance of , where r is the radius towards the2π𝑟
center of mass. It can be seen through this fraction of the full orbit, that a light curve that shows the
minima and maxima of an eclipsing binary star is not exactly half, as it would be if you were observing
a flat circle. Since we know that the star can be approximated as round, we can do some analysis in
figuring out an approximation of the radius of the center of mass. See Figure 11. The arc length that is
visible to us is only .43 of the full circumference. By plugging this in to the formula:

𝐿 =  2π𝑟( θ
360 ) =  (0. 43)(2π𝑟) = 2π𝑟( θ

360 ) 

(0. 43) =  ( θ
360 )

θ = 154. 8 ◦

Our additional set of data extending over 24 hours had a much less accurate light curve. As can
be seen in Figure 9, the data is very much staggered, and a smooth curve does not actually reveal as
much as the points themselves.

a.



b.

Time in seconds Magnitude

0 11.87

3216.675 11.21

6817.0665 11.03

10414.385 11.18

14176.2705 11.09

17682.824 11.18

21217.1975 11.05

51692.998 12.08

53934.7465 12.23

57223.7255 11.86

60818.1215 14.27

64415.599 11.94

68016.8655 10.94

71616.8255 12.77

[Figure 9]
a. Light curve plotting magnitude to time for Data Set 2. The error bars are a significant percentage of
the graph.
b. Data used to create graph

Unfortunately, these results are mostly inconclusive for multiple reasons. Over the 24 hours,
our data was predicted to include 2 whole orbits. With our data points so spread out and with so few
over a long time, we miss valuable fluctuations between sets. In addition to this, at least one data point
appears to be a little too high in magnitude compared to what we would expect. The earlier half of the
graph does reveal some fluctuations whose timeline is somewhat on the scale of 8 hours that may be
representative of eclipses.

Error Analysis



The accepted orbit period for the star system we chose (KIC 3833859) has an accepted period
of 0.4317433 days, or 10.36 hours [7]. While we were not able to actually calculate an orbit period
from our data, we were able to form assumptions based on what we did have. By multiplying our
transient event period by 2 and 3, we got two values which can average out to give us a potential orbit
period for the purpose of performing error analysis. This hypothetical orbit period would average out
to give 10.95 hours. The percentage error from this would be:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =  | 𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 | ×  100 = | 10.95 − 10.36

10.36 | ×  100 =  5. 69%  𝑒𝑟𝑟𝑜𝑟

Of course, this error comes from an assumption that the period of the full orbit would be 2.5 times the
transient eclipse. This is not a valid assumption, as it is baseless. There are many factors that would go
into determining what portion of the transient event makes up the full orbit. For example, the angle
between the viewer and the direction of motion of the star would contribute to what percentage the
transient event constitutes of the whole period.

While we did not get a full orbit of the binary star system, we did obtain a light curve for both
Data Set 1 and Data Set 2. Focusing on Data Set 2, a lot of data became skewed. There were some
magnitudes that seemed to be outliers. These could be outcomes of their processing on Astroart.
Specifically, we found the magnitude of each star by aligning our photos up to the GAIA database, and
gathering reference stars which affected the outcome of the magnitude. This could have been done
incorrectly in multiple ways, such as not always selecting the same reference stars, not aligning the
photos correctly, etc. There may have also been errors in getting the timestamps for each set of data. I
used the SAOImage DS9 processor to get timestamps from the beginning and end of each data point.
By averaging these times, we may have lost some important data. I converted them from
Hours:Minutes:Seconds to just seconds, or just hours, which may have affected significant figures and
the likes. However, it should be noted that these times and their errors are very insignificant in the
broader picture of this specific data acquisition. They were on the scale of milliseconds, while we were
looking at data in the range of hours.

One reason that our 24 hour data got so messed up may be attributed to having some of it take
place during the day. This made the contrast much lower, and in some cases, Astroart had a hard time
aligning the images with its database and each other.

IV Discussion



While we did not end up with a full orbital period, we did end up with two light curves which
showed us a lot, not only about our star system, but also about data acquisition. At first, we thought
that a longer period in which data was acquired would be better for this project, but that ended up not
being true. As can be seen in our data, with an orbital period around 10 hours, the data points need to
be close enough together to be able to see the dips and peaks of the curve.

If we were to do this project again, I would want to have a size of the system, so I could
calculate the full period. I would also want to collect data over a longer period of time. We were limited
by our time, but the Las Cumbres Observatory did have instruments which could have fulfilled a
project like getting the whole orbital period. I would want to do another short orbit star system like
this one, on the order of a couple hours, but I would want to record multiple sets of data over a year so
I could get multiple light curves. I think it would be really interesting to see how the light curve of one
system alters over the course of a year, as it would reveal so much more about the orbit.

I also would like to get multiple images within seconds of each other to get a complete curve
with data for each moment. This way, I would not have to make curves which estimated lines, but I
would have a full set. Ideally, I could have gotten a lot more insight into the eclipse if I had both the
first and second eclipse of the system.

By getting multiple magnitudes over the course of three hours, we were able to put together a
very telling light curve. The peak in the light curve proves the existence that binary star systems exist, a
concept which was not originally accepted by most. The concept of being able to use apparent
magnitude alone to create this graph and prove this phenomenon opens the door for so many scientific
discoveries without super fancy technology. Utilizing processes like this allow things like the
Hertzsprung-Russell Diagrams to be created, which are relied on for multiple different processes in
astrophysics. While obtaining data towards this light curve, not only could we take a step towards
piecing together the orbit of a binary star system, but also the existence of a binary star systems in
general is proven in a simple, observable way.
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