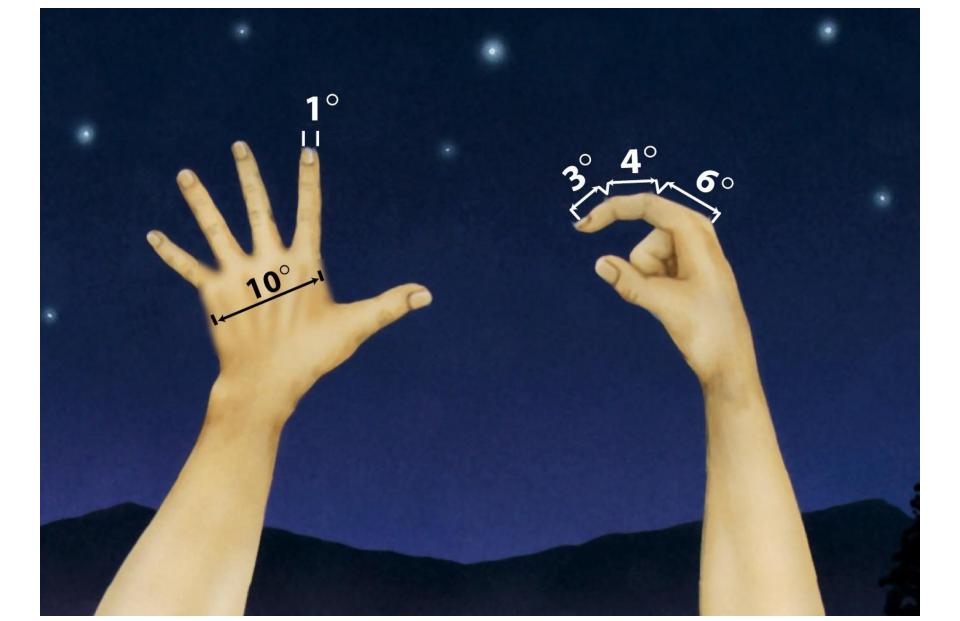
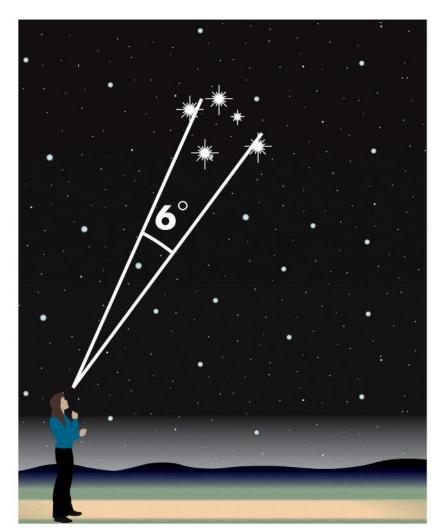
Physics 134 Philip Lubin


www.researchgate.net/profile/Philip_Lubin

www.deepspace.ucsb.edu/classes


Introduction Lecture 2

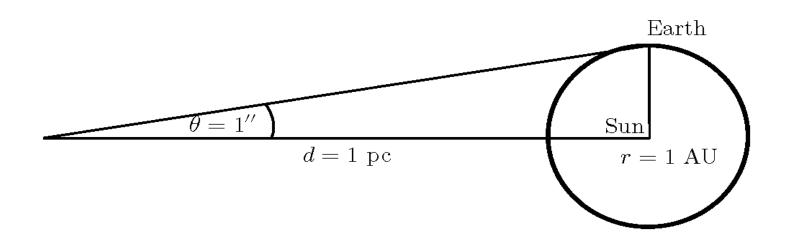
Angular Measurements

- 360 degrees (360°) in full circle
- 2π radians = 360 degrees
- 1 degree = $2\pi/360=0.01745$ radians (rad)
- 1 rad = 360/ 2π =57.296 degrees
- 1 rad = 206,265 arc sec
- Subdivide one degree into 60 arcminutes
 - minutes of arc
 - abbreviated as 60 arcmin or 60′ (NOT feet)
- Subdivide one arcminute into 60 arcseconds (arc sec)
- 1 degree = 60*60=3600 arc sec
 - seconds of arc
 - abbreviated 60 arcsec or 60" (NOT inches)

Astronomical distances are often measured in astronomical units, parsecs, or light-years

Astronomical Unit (AU)

- One AU is the average distance between Earth and the Sun
- 1.496 X 10⁸ km or 92.96 million miles


Light Year (ly)

- One ly is the distance light can travel in one year at a speed of about 3 x 10⁵ km/s or 186,000 miles/s
- 9.46 X 10¹² km or 63,240 AU

Parsec (pc)

- the distance at which 1 AU subtends an angle of 1 arcsec or the distance from which Earth would appear to be one arcsecond from the Sun
- $-1 pc = 3.09 \times 10^{13} km = 3.26 ly$

How a Parsec (pc) is Defined 1 pc ~ 3.26 ly

Distances to Objects

Distance	Comments
1.3 pc	Closest Star (α Centauri – Proxima is closest)
1.3 light seconds	Earth to Moon
8 light minutes	Earth to Sun
5 light hours	Pluto
4.2 ly	Closest Star
2.5×10^4 ly	To Galactic Center
10^5 ly	Galactic Diameter
2×10^6 ly	Andromeda (M31)
10^{10} ly	Most distant observed galaxy
2×10^{10} ly	Size of Universe

LCO World Wide Sites

https://lco.global/observatory/sites/

LCO sites

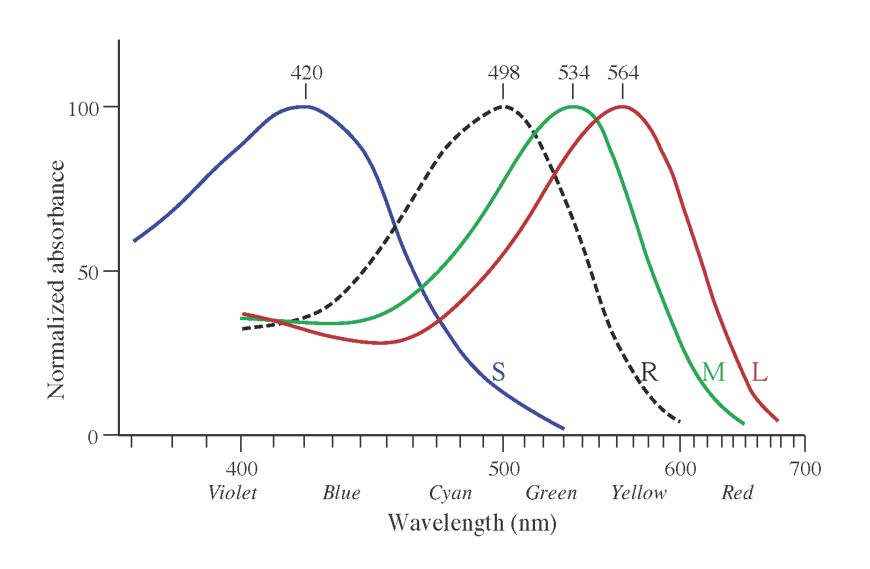
	Elevation (m)	Code	Timezone	Status
Siding Spring Observatory 31° 16′ 23.88″S 149° 4′ 15.6″E	1,116	COJ	UTC+10	1 x 2-meter (#02) 2 x 1-meter (#11,#03) 2 x 0.4-meter (#03,#05)
South African Astronomical Observatory 32° 22′ 48″S 20° 48′ 36″E	1,460	CPT	UTC+2	3 x 1-meter (#10,#13,#12) 1 x 0.4-meter (#07)
Teide Observatory 28° 18′ 00″N 16° 30′ 35″W	2,330	TFN	UTC	2 x 0.4-meter (#14,#10) 2 x 1-meter (coming online 2021)
Cerro Tololo Interamerican Observatory 30° 10′ 2.64″S 70° 48′ 17.28″W	2,198	LSC	UTC-3	3 x 1-meter (#05,#09,#04) 2 x 0.4-meter (#09,#12)
McDonald Observatory 30° 40′ 12″N 104° 1′ 12″W	2,070	ELP	UTC-6	2 x 1-meter (#08,#06) 1 x 0.4-meter (#11)
Haleakala Observatory 20° 42′ 27″N 156° 15′ 21.6″W	3,055	OGG	UTC-10	1 x 2-meter (#01) 2 x 0.4-meter (#06,#04)
Wise Observatory 30° 35′ 45″ N 34° 45′ 48″E	875	TLV	UTC+2	1 x 1-meter
Ali Observatory 32° 19′ N 80° 1′E	5,100	NGQ	UTC+8	Under construction

LCO 0.4m Telescopes In "dome" and in Chile

https://lco.global/observatory/telescopes/04m/

Some LCO Telescope Sites

UL: 2m Haleakala HI, UR: 2m Siding Springs AU LL: Siding Springs complex LR: Sedgwick CA



LCO Resources Ico.global

- Instruments
 - lco.global/observatory/instruments/
- Exposure and SNR Calculator
 - exposure-time-calculator.lco.global/
- Filters
 - lco.global/observatory/instruments/filters/
- BANZAI Data Processing Pipeline
 - lco.global/documentation/data/BANZAlpipeline/
- Recent Science and Educational Research
 - //lco.global/highlights/
- Spacebook Learn Astronomy
 - https://lco.global/spacebook/

Human Eye Response

Magnitudes – to describe "brightness"

- Magnitudes need to be specified at a wavelength
- m_v is "visible" band eye peak about 550nm)
- m=Apparent magnitude (as we measure)
- M=Absolute magnitude (as though obect were a point source at d=10 pc
- Defined based on historical human perception
 - Larger m is dimmer
 - Log scale 5 mag =100x brightness
 - m=15 is 100x dimmer than m=10)

$$m_2 - m_1 = 2.5 \log \frac{b_1}{b_2}$$

$$M - m = 2.5 \log \left(\frac{10 \text{ pc}}{d}\right)^2 = 5 \log \frac{10 \text{ pc}}{d} = 5 \log 10 - 5 \log d = 5 - 5 \log d$$

Magnitudes and Flux

Brightest Star (Sirius A ~ m_v=-1.46)
Unaided human eye can see down to about m=6
Assuming a clear dark sky (not SB)

Magnitude	Flux	Eye	Palomar (photons/s)
	(photons cm ⁻² s ⁻¹)	(photons/s)	
0	3×10 ⁶	10^{6}	6×10 ¹¹
5	3×10^4	10^{4}	6×10 ⁹
10	300	100	6×10 ⁷
15	3	1	6×10 ⁵
20	0.03	10^{-2}	6×10^3
25	3×10 ⁻⁴	10^{-4}	60
30	3×10 ⁻⁶	10^{-6}	0.6

$$F(m=0) = 1 \times 10^{-5} \text{ erg cm}^{-2} \text{ s}^{-1} \times \frac{1 \text{photon}}{3.6 \times 10^{-12} \text{ erg}} \approx 3 \times 10^{6} \text{ photons cm}^{-2} \text{ s}^{-1}$$

$$m_2 - m_1 = 2.5 \log \frac{b_1}{b_2}$$

Imaging Sensor Parameters & SNR

Typical device is cooled CCD or CMOS – LCO uses CCD's

Symbol	Quantity (units)
$N_{\scriptscriptstyle R}$	Readout Noise (e^-)
i_{DC}	Dark Current (e^-/s)
Q_e	Quantum efficiency (dimensionless)
F	Point Source Signal Flux on Telescope (photon $ m s^{-1} \ cm^{-2}$)
F_{eta}	Background Flux from Sky (photons s ⁻¹ cm ⁻² arcsec ⁻²)
Ω	Pixel Solid Angle (arcsec ²) (assuming greater than seeing)
${\cal E}$	Telescope Efficiency (dimensionless)
τ	Integration Time (s)
A	Telescope Area (cm²)

- Signal from Source $S = F \tau A \varepsilon Q_e$
- Dark current in detector $S_{DC}=i_{DC} au$
- Background signal $S_{\beta} = F_{\beta} A \varepsilon Q_e \Omega \tau$

Noise and Signal

- Time dependent signal term $S_{\text{time}} = S + S_{DC} + S_{\beta}$
- Assume all of these terms are uncorrelated
- Error in terms $N_S = \sqrt{S}$ $N_{DC} = \sqrt{S_{DC}}$ $N_{\beta} = \sqrt{S_{\beta}}$
- Uncorrelated errors add in quadrature

$$N_{\rm time} = \sqrt{N_S^2 + N_{DC}^2 + N_\beta^2} = \sqrt{S + S_{DC} + S_\beta} = \sqrt{F\tau A\varepsilon Q_e + i_{DC}\tau + F_\beta A\varepsilon Q_e\Omega\tau}$$

Detector Read noise NOT integration dependent

$$N_{\text{tot}} = \sqrt{N_R^2 + N_{\text{time}}^2} = \left(N_R^2 + \tau(i_{DC} + F_{\beta}A\varepsilon Q_e\Omega)\right)^{1/2}$$

- Define "effective area" $A_{\varepsilon} = A \varepsilon Q_{e}$
- Total noise per unit time $N_T = FA_{\varepsilon} + i_{DC} + F_{\beta}A_{\varepsilon}\Omega$

Signal to Noise Ratio (SNR)

$$\frac{S}{N} = \frac{FA_{\varepsilon}\sqrt{\tau}}{\left[\frac{N_R^2}{\tau} + FA_{\varepsilon} + i_{DC} + F_{\beta}A_{\varepsilon}\Omega\right]^{1/2}} = \frac{FA_{\varepsilon}\sqrt{\tau}}{\left[\frac{N_R^2}{\tau} + N_T\right]^{1/2}} = \frac{FA_{\varepsilon}\tau}{\left[N_R^2 + \tau N_T\right]^{1/2}}.$$

$$N_T = FA_{\varepsilon} + i_{DC} + F_{\beta}A_{\varepsilon}\Omega$$

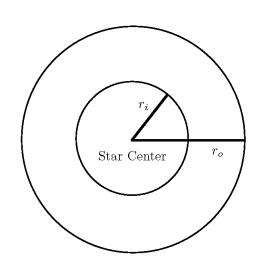
$$A_{\varepsilon} = A \varepsilon Q_{e}$$

Integration Time to Obtain Desired SNR (S_N)

$$S_N \equiv S / N = FA_{\varepsilon} \tau / \left[N_R^2 + \tau N_T \right]^{1/2}$$

$$\tau = \frac{S_N^2 N_T \pm \sqrt{S_N^4 N_T^2 + F^2 A_{\varepsilon}^2 S_N^2 N_R^2}}{2F^2 A_{\varepsilon}^2}$$

$$= \frac{S_N^2 N_T}{2F^2 A_{\varepsilon}} \left[1 + \sqrt{1 + \frac{4F^2 A_{\varepsilon}^2 N_R^2}{S_N^2 N_T^2}} \right]$$


Example (20 magnitude object)

$$N_R = 12$$

 $i_{DC} = 1 e^- \text{ s}^{-1} \text{ pixel}^{-1} \text{ at } 35^{\circ}\text{C}$
 $Q_e = 0.3$
 $A = 10^3$
 $\varepsilon = 0.5$
 $F_{\beta} = 10^{-2} \text{ photons s}^{-1} \text{ cm}^{-2} \text{ arcsec}^{-2} \text{ (ideal sky)}$
 $\Omega = 4 \text{ arcsec}^2$
 $F = 0.03 \text{ photons s}^{-1} \text{ cm}^{-2} \text{ (20th magnitude)}$

Integration Time (sec)	SNR ($F_{\beta} = 10^{-2}$)	SNR ($F_{\beta}=0.1$)
1	0.4	0.3
10	2.8	1.6
100	13	5.5
1000	42	18

Aperture Photometry Removing sky from source

Symbol	Meaning
$N_{I\!A}$	Number of pixels in inner aperture
$N_{O\!A}$	Number of pixels in outer aperture
G(j,k)	Pre-flat-fielded image array
R	A/D counts per e^-
N(j,k)	$G(j,k) / R$, the pixel value in $ e^-$

