FISSIONCORE Brief Users Guide

October 2013

Cameron Reed (reed@alma.edu); Klaus Rohe (klaus-rohe@t-online.de)

https:

First, read the published paper describing FISSIONCORE and FISSIONRAND in order to get

a general sense

PROGRAM VE

//mail.alma.edu/home/reed@alma.edu/Briefcase/FISSIONCORE

of the programs and the units and parameters involved.

RSIONS

FORTRAN version

FISSIONCORE.f

FORTRAN version that uses compiler’s built-in random-number
generator. Expects VALUES file of format

d, R, Of, Os, Vneut
v, Vo, At, tmax

FISSIONRAND.f

FORTRAN version with RAN2 random-number subroutine.
Expects VALUES file with IDUM seed:

d’ R, o1, Os, Vneut
v, Yo, At; tmax, IDUM

The C version is a rewrite of the FORTRAN version in standard C. The semantics and the
names of the major variables used in the FORTRAN version have been retained in the C
code. The C code also contains comment lines which give hints to the related source code

line number in the FORTRAN code.

C Version

fissioncore.c

This is the C module which contains the main function.
fissioncore.exe is a windows executable. On Windows (and
analogue on LINUX, UNIX or Mac) you can call it from the
command prompt: fissioncore values.dat fisres [seed]
Expects values.dat file of format

d, R, Of, Os, Vneut
v, Vo, At, tmax

The first command line parameter is the name of the simulation
parameter file the second parameter is the first part of the name

of the result files. There are two result files generated one with
name fisres.txt which is an easily readable text file and the other
with the name fisres.csv in a " separated format which can be
processed by spread sheet programs. The third parameter

which is optional is the seed for the random generator. If the third
parameter is not given seed=1000 is used as a default. In
‘fissioncore.c’ the functions defined in ‘fisutility.h’ and ‘core.h’ are

called.
core.h, This module is the work horse of the simulation it initializes all the
core.c variables in the function ‘intializeSimulation(...)’ and then starts thg
simulation in the function ‘doSimulation(...)’.
neutron.h In this header file the C structure ‘Neutron’ is defined as well as an

array ‘Neutrons’ of pointers to type ‘Neutron’ structures which. The
array has a capacity of ‘'MAX NUT . This constant is also defined in
this header file. The ‘Neutron’ structure represents a single neutron
during the simulation it contains xyz-coordinates of its position,
the components of the velocity vector as well as the state of the
neutron. The state of a neutron can be 'A' alive, 'C' consumed in
fission, 'E' escaped, 'U' currently unused.

fissutility.h, The module ‘fissutility.c’ contains utility functions for random
fissutility.c velocity generation, reading the file which contains the simulation
parameters and formatted writing to result files used in
‘fissioncore.c'.

makefile Makefile to generate the executable with the make utility.

The windows executable has been created with GNU gcc 4.8.1

and GNU Make 3.82 as available from
http://www.equation.com/servlet/equation.cmd?fa=fortran.

There are no Windows specific functions used in the code and
therefor it should be no problem to generate an executable for all
operating systems for which GNU gcc or other standard C compilers
and the Make utility are available (LINIUX, UNIX, Mac, ...). The
current ‘makefile’ is for Microsoft Windows it has to be adapted
accordingly if used on other operating systems.

The Java version is a redesign of the C version. The structure of this version has similarity
to the C version but one has to keep in mind that Java is a pure object oriented
programming language but C is a procedural language. The architecture of the Java version
is a compromise on performance issues, good object oriented design and similarity
(comprehensibility) across the different programming language versions of this simulation.

Java Version

FissionCore.java

This is the java class which contains the main method
in which all methods of the other objects which
provide functionality for the simulation are executed.
To execute the java version you have to go to the
directory where the java source files reside and
compile them with the command ‘javac *.java’ (you
can alternatively make a project with Eclipse or
Netbeans if you like to use an IDE). If compilation is
finished you can start the simulation with the
following command:

java -Xmx1024m FissionCore values.dat valuesres
[seed]

It is important to remark that java has to be called
with the parameter ‘-Xmx1024m’ (this means 1 GB of
heap memory) this determines how much heap
memory the JVM can use. The heap memory required
by the simulation is determined mainly by the
maximum number of neutrons which can be processed
(‘MAX_NUT’) defined in the source code and the
number of nuclei in the three dimensional arrays
‘NUCSTATUS’ and ‘LAST’ computed dynamically at run
time from the Parameters ‘D’ and ‘RC'. In the current
java source MAX_NUT = 800000 and simulations with
‘D=180’ and ‘RC= 22000’ were feasible. If these values
are increased the -X parameter has to be adopted
accordingly. (For details of the meaning of ‘-
Xmx1024m’ see for example:
http://stackoverflow.com/questions/1098488/jvm-
heap-parameters) or
http://stackoverflow.com/questions/5374455 /what-
does-java-option-xmx-stand-for

The seed parameter is optional is the seed for the
random generator. If the fifth parameter is not given
seed=1000 is used as a default.

Core.java

This is the work horse for the simulation. It provides
the two static methods ‘intializeSimulation(...)’ and
‘doSimulation(...)". They provide the same functionality
as the respective functions in the module ‘core.c’ of th C
version described above.

SimulationParameters.java

An instance of this java class has all the simulation
parameters as getters and setters which have to be

available before the simulation starts. An instance of
this class is generated by calling its constructor with the
name of the simulation parameter file (values.dat) as a
parameter.

Neutron.java An instance of this class represents a single neutron
during a simulation run. See description of ‘neuron.h’
for the C version. The class has an analogous function as
the C structure defined in ‘neutron.h’ (see above).

FissUtility.java Utility class which contains static methods analogous to
That in the C module ‘fissutility.c’ (see above).

FissionCoreException.java | Application specific exception class for error handling.

Python utility to evaluate and plot the data in the csv result files.

The python script ‘evalfisres.py’ takes *.csv files generated by the simulations programs
and generates graphical plots which are stored in jpeg files. These files can be easily
included in other documents. ‘evalfisres.py’ is based on matplotlib

(see http://matplotlib.org/). It is called from the command line as follows:

python evalfisres.py fisres.csv

[t reads the simulation result file ‘fisres.csv’ and generates the following plots
stored in the files ‘LogLiveNeutrons_fisres.jpeg’, FissionsPerTime_fisres.jpeg’,
‘Collisions2Process_fisres.jpeg’ and ‘PercentageFissioned_fisres.jpeg’. Examples
are shown below:

Natural logarithm of live neutrons versus time.
NU=4, RC=23500.0, SIFGF=2.470, SIGS=4.566, initial number of neutrons=100, initial number of nuclei=9308928

In(live neutrons)

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in zeta seconds (zs)

Fissions per time (1 / zs)

Collisions to proces

Fission rate versus time.
NU=4, RC=23500.0, SIFGF=2.470, SIGS=4.566, initial number of neutrons=100, initial number of nuclei=9308928

250

150

100

50 -

i H
40000 50000 60000 70000 80000
Time in zeta seconds

0 10000 20000 30000

Collisions to process versus time.

600 NU=4, RC=23500.0, SIFGF=2.470, SIGS=4.566, initial number of neutrons=100, initial number of nuclei=9308928

500 -

400 |-

w

=3

S
T

200 |

100

i i
40000 50000 60000 70000 80000
Time in zeta seconds

0 10000 20000 30000

30

25

20

Collisions to proces
-
G

10

Percentage of nuclei fissioned versus time.

NU=4, RC=23500.0, SIFGF=2.470, SIGS=4.566, initial number of neutrons=100, initial number of nuclei=9308928

10000

i i i i
20000 30000 40000 50000
Time in zeta seconds

i
60000

i
70000

80000

This python script can be easily extended to generate plots for other kinds of
evaluations of ‘FISSIOBCORE’ simulation results.

Detailed comments on the FORTRAN versions of FISSIONCORE:

The user need only supply a brief two-line file, VALUES, which gives input parameters.
These are entered in two lines:

d, R, Of, Os, Vneut
V,Vo, At, tmax

For example, if the contents of VALUES is

300.0,39000.0,1.235,4.566,19.56
10,100,0.5,25000.

Then we have

d=300fm

R=39000 fm

of, 0s = 1.235, 4.566 barns
Vneut = 19.56 fm/zs

v =10 neutrons per fission
Vo = 100 initial neutrons
At=0.51zs

tmax = 25,000 zs

The program creates two output files: CORE-RESULTS, whish gives a detailed listing of
neutron numbers, number of fissions processed, number of escapees, etc., at every 10th
timestep, and CORE-PLOT, a file which lists only time, number of neutrons, and natural
logarithm of number of neutrons every 10t timestep; this latter file is to help in producing
quick EXCEL plots of the number of live neutrons as a function of time. If 105,000 live
neutrons is reached before tmax, the program stops automatically. This odd-looking value
was chosen in order to get to 100,000 neutrons recorded in the output files; some “hot”
combinations of parameters an lead to addition of hundreds of neutrons per timestep.

The next page gives a listing of some of the more important program variables. This is
followed by some sample output.

Lattice-Core Simulation Variables (not all “utility” variables are listed - just important ones)

General variables

D

RC
ETA
DT
FISS
NU

PI
RATIO
RNUC
SIGF, SIGS, SIGT
TIME
TMAX
VEL

Collision-Processing Variables

NCOLL
PAIR1(10000)
PAIR2(10000,3)
ID1

R

DIST
STATUS

REJECT
SCATT

Nuclei-Related
NUCSTATUS(600,600,600)

NUCALIVE
NUCS
LAST(600,600,600)

Neutron Related

ESC
LIVENUT(400000)

NEUTS

NUTINIT

NUTALIVE

NUTX, NUTY, NUTZ
VNUTX, VNUTY, VNUTZ

Lattice side length

Core radius (fm)

Number of nuclei across diameter of core = 2*RC/D + 1
At, in units of 10-21 sec

Number of fissions processed

v

T

ot /Ot

Nuclear radius (fm)
Cross-sections (bn)

Current elapsed time, 10-21 sec
Maximum simulation time
Neutron speed, fm per 10-21 sec

Number of collisions to be processed currently
List of neutrons in collisions. Up to 10000 collisions/timestep
(i, j, k) lattice location of nucleus involved in a collision
ID number of neutrons in collision to be processed
Separation of neutron/nucleus in possible collision currently
being examined
Array of neutron/nucleus distances in putative collision
Status of a putative collision
(1, 0,-1,-2) = (fission, scatter, not used, pending)
set to -1 if another neutron closer
Collisions rejected due to 2 or more neuts striking a given nucleus
Number of scatterings processed

Array indicating status of individual nuclei at lattice corner (j, j, k)
(1,0,-1,-2) = (live, fissioned, dead due to overlap, not yet assigned)
Number of live nuclei at any time

Number of nuclei initially read in

Array indicating last neutron that nucleus at lattice corner (i, j, k)
collided with

Number of escaped neutrons at any time

Array indicating status of individual nuclei

(1,0,-1,-2) = (live, consumed in fission, escaped, not yet assigned)
Total number of neutrons created, including initial ones

Initial number of neutrons

Number of live neutrons at any time

Neutron (x, y, z) locations, each an array of size 400000

Neutron speed components, each an array of size 400000

Here is an abbreviated copy of the output in the case of the VALUES results above.

LATTICE-CORE SIMULATION RESULTS
COPYRIGHT BRUCE CAMERON REED & KLAUS ROHE 2013

CORE RADIUS (FM) 39000.

LATTICE SPACING (FM), ETA 300.0 261
FISS & SCATT SIGMAS (BN) 1.235 4.566
NUCLEI ALIVE INITIALLY ~ 9201234
NUCLEAR RADIUS (FM) 13.589
NEUTRONS PER FISSION 10

NEUTRON VELOCITY (FM/ZS) 19.560
INITIAL NUMBER OF NEUTRONS 100

TIMESTEP (ZS) 0.500
TIME LIVE LIVE NEUTS FISSIONS ESC COLLISIONS REJECTED SCATT
NUCLEI NEUTRONS CREATED NEUTS TO PROCESS COLLISIONS NEUTS
0.0 9201234 100 100 0 0 0 0 0
50 9201234 100 100 O 0 0 0 0
10.0 9201234 100 100 0 0 0 0 0
15.0 9201234 100 100 0 0 0 0 0
20.0 9201234 100 100 O 0 0 0 0
25.0 9201234 100 100 O 0 0 0 1
30.0 9201234 100 100 0 0 0 0 1
35.0 9201234 100 100 0 0 0 0 2
40.0 9201234 100 100 O 0 0 0 4
450 9201234 100 100 O 0 0 0 4
50.0 9201234 100 100 0 0 0 0 4
55.0 9201234 100 100 0 0 0 0 4
60.0 9201233 109 110 1 0 0 0 4
65.0 9201233 109 110 1 0 0 0 4
70.0 9201233 109 110 1 0 0 0 4
75.0 9201233 109 110 1 0 0 0 4
80.0 9201233 109 110 1 0 0 0 4
85.0 9201233 109 110 1 0 0 0 5
90.0 9201233 109 110 1 0 0 0 5
950 9201233 109 110 1 0 0 0 5
100.0 9201233 109 110 1 0 0 0 5

(lines deleted)

24930.0 9182971 61543 182730 18263 102924 10 3 67195
24935.0 9182949 61597 182950 18285 103068 17 3 67287
24940.0 9182927 61667 183170 18307 103196 13 3 67377
24945.0 9182901 61783 183430 18333 103314 8 3 67471

24950.0 9182877 61863 183670 18357 103450 14 3 67552
24955.0 9182840 62060 184040 18394 103586 11 3 67634
24960.0 9182811 62181 184330 18423 103726 10 3 67722
24965.0 9182781 62318 184630 18453 103859 15 3 67810
24970.0 9182762 62335 184820 18472 104013 10 3 67912
24975.0 9182746 62341 184980 18488 104151 10 3 67996
24980.0 9182719 62436 185250 18515 104299 13 3 68088
24985.0 9182689 62569 185550 18545 104436 11 3 68188

24990.0 9182656 62755 185880 18578 104547 9 3 68267
24995.0 9182628 62864 186160 18606 104690 13 3 68359
25000.0 9182600 62967 186440 18634 104839 14 3 68465

FISSIONRAND

Operates exactly as FISSIONCORE but with the addition of parameter IDUM in the VALUES
file:

da R, Ofl GS; Vneut
Vr VO; At, tmax, IDUM

IDUM seeds the Press et. al. RAN2 random number generator, and should be set to a
negative integer; a different value will lead to a different sequence of random numbers.

10

