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Quality Factor for
Neutron in Tissue

REM=QF*RAD
https://www.nrc.gov/reading-rm/doc-
collections/cfr/part020/part020-
1004.html

a Value of quality factor (Q) at the
point where the dose equivalent is
maximum in a 30-cm diameter

cylinder tissue-equivalent phantom.

b Monoenergetic neutrons incident
normally on a 30-cm diameter

cylinder tissue-equivalent phantom.
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Radiation Background Rate

Nuclear Employee Rate Limit
Smoking a pack of cigarettes a day

Living in Kerala Coast, India
Living in South Dakota (Highest) vs Florida (Lowest)
Average in US (Includes typical medical X-rays)

Average in US (Natural)

Having a pacemaker powered by plutonium

From body (typical)

Cosmpegg%(gﬁifg awfﬁ\‘l%}mula as opposed to breastfeed

Living in a stone, brick, or concrete building
US Limit on drinking water

Living at elevation(per 1,000 feet)

Nuclear Weapons testing fallout

Having crowns/false teeth

50 miles from coal power plant

Havingva smoke detector in your house
earing a watch with an LCD

Using camping gas lanterns

50 miles from nuclear power plant
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Airport security
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Little Boy U (Hiroshima) N Spectra
Prompt fission (inside) and Weapon Leakage (outside casing) (Spriggs 2017)
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Figure 5. This is a plot of the neutron spectra (normalized to 1 neutron) that was used to
estimate the residual radiation source term for the Hiroshima detonation. The average
neutron energy of the prompt fission spectrum was 1.46 MeV and the average neutron
energy of the leakage spectrum was 0.31 MeV. The prompt fission spectrum was used to
estimate the fission-product yield curve, which is used to determine the radionuclides in the
fission product source term. The leakage spectrum was used to calculate the air-activation
source term and the ground-activation source term.



Fat Man (Pu implosion) and Little Boy (U gun) Weapon Gamma Spectra

1.E-01 3
s FATMAN [ "-H_‘\
3 1E02 3 — |
£ {  LITTLE BOY C =
% - —]
o 1.E-03 3 -
g M —
; i ; | = T
© 1.E-04 3 SN B PR~ | —
b = L ' o
x ]
3
g ' il
€ 16054 X Hir e
£ :
1)
©
1.E-06 : —T 117 Tt —F
1.E-07 ———— ——— ——— —
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01
Gamma Energy (MeV)

Figure 3: Gamma spectra for Fat Man and Little Boy. The total Little Boy output (sum
over all angles) is shown along with the 40 individual segment tallies scaled up to the full
sphere. The segment tallies illustrate the two-dimensional variation of the output.



Fat Man (Pu implosion) and Little Boy (U gun) Weapon Neutron Spectra
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Figure 2: Neutron spectra for Fat Man and Little Boy. The total Little Boy output (sum
over all angles) is shown along with the 40 individual segment tallies scaled up to the full
sphere. The segment tallies illustrate the two-dimensional variation of the output.



Fat Man (Pu implosion) and Little Boy (U gun) Weapon Gamma vs Angle
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Figure 5: Gamma output variation with angle. Segment tallies have been scaled up to the
full sphere. Note that the Fat Man value has been reduced by a factor of 10. As with
neutrons, the output is suppressed toward the nose (0°) and tail (180°), though these
directions represent a small solid angle and the average is heavily weighted toward the
values near the waist (90°).



Thermonuclear N Spectra (per KT vield)
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Figure 4. Thermonuclear neutron spectra with energies greater than 0.1 MeV




Gammas from Weapon

* “Instantaneous” Gamma’s are produced within the weapon and
almost entirely absorbed by the dense nuclear material during
the fission and fusion process. Most do not leave the weapon

* Prompt Gamma’s peak at about 10-100 ns after detonation

* Delayed Gammas come as the weapon expands into the air/
ground/vacuum as the vaporized (plasma) weapon material
density rapidly decreases

* |n addition to the gammas from the weapon, there is also
neutron capture in the air (Nitrogen primarily) that emits a
radiative capture (of n) and produces more gammas

* |f the detonation is near the ground, the neutrons induced
radioactivity in the ground (and air) that can produce gammas.
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Figure 8.14. Calculated time dependence of the gamma-ray energy output per kiloton
energy yield from a hypothetical nuclear explosion. The dashed line refers
to an explosion at very high altitude.



Gamma glow
from
Atmosphere
Backscatter

SCATTERED RADIATION

#

A
TARGET,

Figure 8.45a. Target exposed to scattered gamma radiation.
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Figure 8.33a. Slant ranges for specified gamma-ray doses for targets near the ground as
a function of energy vield of air-burst fission weapons based on 0.9 sea-
level air density. (Reliability factor from 05 to 2 for most fission

weapons.)
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Figure 8.33b. Slant ranges for specified gamma-ray doses for targets near the ground as
a function of energy yield of air-burst thermonuclear weapons with 50
percent fission yield, based on 0.9 sea-level air density. (Reliability factor

from 0.5 to 1.5 for most thermonuclear weapons.)



Shielding
Thickness Table .41

APPROXIMATE EFFECTIVE TENTH-VALUE THICKNESSES FOR FISSION PRODUCT AND

-:O r NITROGEN CAPTURE GAMMA RAYS

. . Fission Product Nitrogen Capture

B S S I O n Density Tenth-Value DxT Tenth-Value DxT
Material (Ib/cuft)  Thickness (inches) (lb/sqft) Thickness (inches) (lb/sq ft)

3 ﬂo d u CtS Steel (Iron) 490 3.3 135 4.3 176

Concrete 146 11 134 16 194
dan d Earth 100 16 133 24 200
Water 62.4 24 125 39 201

N It rOge N Wood 40 38 127 63 210
Capture
Gamma

Glasstone and Dolan —
Chap 8
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Figure 8.47. Percentage of initial gamma-radiation dose received as a function of time
5 I\/. T for 20-kiloton and 5-megaton air bursts.
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Neutrons from Weapons

Neutrons carry a relatively small fraction of weapon yield
* Typ ~1%

Prompt Neutrons Come within 1 us after detonation
* Neutrons come from both fission and fusion process

Delayed Neutrons come from Fission products
* Delayed Neutrons are < 1% of total neutrons

 However the delayed neutron dose is “enhanced” by “hydrodynamic
effects” from the blast wave (less air as it is “pushed out of the way”).
For distances > ~1km from high yield weapon (MT range) the dose from
delayed neutrons can exceed the dose from prompt neutrons

* Majority of delayed neutrons come within 1 minute

Due to scattering on weapons materials, casi.nfg, air the neutron
spectrum (# vs energy) at observer is quite different (softer
spectrum) than inside the weapon (at moment of detonation/

creation)

* Neutron from fission are typ ~ 1 Mev while those from fusion are

typ ~ 12-14 MeV (peak of spectrum outside weapon)
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Figure 8.33a. Slant ranges for specified gamma-ray doses for targets near the ground as
a function of energy vield of air-burst fission weapons based on 0.9 sea-
level air density. (Reliability factor from 05 to 2 for most fission

weapons.)
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Figure 8.64b. Slant ranges for specified neutron doses for targets near the ground as a
function of energy yield of air-burst thermonuclear weapons with 50
percent fission yield, based on 0.9 sea-level air density. (Reliability factor

from 0.25 to 1.5 for most thermonuclear weapons.)
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Table 8.72

DOSE TRANSMISSION FACTORS FOR VARIOUS STRUCTURES

Structure Initial Gamma Rays Neutrons

Three feet underground 0.002-0.004 0.002-0.01
Frame House 0.8-1.0 0.3-0.8
Basement 0.1-0.6 0.1-0.8
Multistory building (apartment type):

Upper stories 0.8-09 09-1.0

Lower stories 0.3-0.6 0.3-0.8
Concrete blockhouse shelter:

9-in. walls 0.1-0.2 0.3-0.5

12-in walls 0.05-0.1 02-04

24-in walls 0.007-0.02 0.1-0.2
Shelter; partly above grade:

With 2 ft earth cover 0.03-0.07 0.02-0.08

With 3 ft earth cover 0.007-0.02 0.01-0.05



Stable and Unstable Isotopes
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Chart of nuclides (isotopes) by binding energy, depicting the valley of stability. The diagonal
line corresponds to equal numbers of neutrons and protons. Dark blue squares represent
nuclides with the greatest binding energy, hence they correspond to the most stable nuclides.
The binding energy is greatest along the floor of the valley of stability.



Stable and Unstable Isotopes
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Chart of nuclides by half life. Black squares represent nuclides with the longest half lives hence
they correspond to the most stable nuclides. The most stable, long-lived nuclides lie along the
floor of the valley of stability. Nuclides with more than 20 protons must have more neutrons
than protons to be stable.



Stable and Unstable Isotopes
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Chart of nuclides by type of decay mode. Black squares are stable nuclides. Nuclides with
excessive neutrons or protons are unstable to B- (light blue) or B+ (green) decay, respectively. At
high atomic number, alpha emission (orange) or spontaneous fission (dark blue) become
common decay modes.



Stable and Unstable Isotopes
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Example: The uranium-238 series (grey line) is a series of a (N and Z less 2) and B- decays (N
less 1, Z plus 1) to nuclides that are successively deeper into the valley of stability. The series
terminates at lead-206, a stable nuclide at the bottom of the valley of stability.



