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Abstract

How effective are methods for estimating bolide energies from infrasound signal period-yield relationships? A
single global period–energy relation can obscure signiEcant variability introduced by parameters such as the
atmospheric Doppler wind proEle and the bolide’s energy deposition proEle as a function of altitude. Bolide
speed, entry angle, burst altitude, and multiepisode fragmentation may all play a role in deEning the detected
period of the shockwave. By leveraging bolide light-curve data from the Center for Near Earth Object Studies, we
re-examined the period–energy relation as a function of these parameters. Through a bootstrap approach, we show
that various event subsets can deviate from widely cited period–energy models and we identify which speciEc
conditions most strongly reshape the period–energy scaling. The results deEne both the Edelity and reliability of
period–energy relations when no additional data beyond the infrasound record is available and improve the
outcome when supporting data from bolide trajectories and light curves are included. Ultimately, these Endings
expand the scope of earlier models, providing a nuanced and robust framework for infrasound-only yield
estimation under a range of bolide scenarios.

Uni�ed Astronomy Thesaurus concepts: Planetary science (1255)

1. Introduction

The need for simple, practical estimators of bolide energy
using infrasound signals stretches back to methods originally
developed for monitoring nuclear tests, most notably the Air
Force Technical Applications Center (AFTAC) period-yield
relations (D. O. Revelle 1997). The AFTAC relations were
established based on an analysis of the dominant period of
nuclear-explosion signals at source-to-station distances of
1300–8500 km (S. Glasstone & P. J. Dolan 1977; D. O. Revelle
1997).

The general form for period-based energy relations is:

( ) ( ) ( )= +E A P Blog log , 1

where E is energy in units of kilotons of TNT equivalent

(1 ktTNT= 4.184·1012 J), P is the dominant infrasound signal

period (in seconds), typically measured at maximum ampl-

itude, and A and B are the regression coefEcients. Some

relations employ an averaged signal period (P ), calculated by

averaging the measured period across all stations that detected

a particular high-energy event. Table 1 lists all empirical

period-yield relations published to date, including those

derived in this study.
As applied to bolides, ReVelle’s approach effectively

reduced the total atmospheric energy by half, on the
assumption that a signiEcant fraction of the energy was
radiated rather than contributing to the shock. This is
reasonably in line with the energy partition estimates for
meteoroid entries (M. F. Romig 1965; E. A. Silber et al. 2018).
S. Glasstone & P. J. Dolan (1977) state that this 50%
partitioning only applies to bursts with altitudes <12 km and
that at higher altitudes the fraction is lower. They also noted
that the distribution between thermal radiation and blast
changes more rapidly above 30 km, which could affect the
energy–period relationship for events at very high altitudes. It
is not well known, however, how this might apply to bolides.
In Table 1, the Erst relations published by D. O. Revelle
(1997) are modiEed from their original form where the energy
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had been halved. In the original form, the coefEcient B is 0.3
smaller due to halving of the energy (i.e., the log(2)= 0.3). In
this paper, all logs are assumed to be base 10.

R. Whitaker & J. Mutschlecner (2006) used unclassiEed
atmospheric nuclear-explosion test data and derived a new
relation, applicable to all energy ranges. This relation was
recently updated by including an additional unclassiEed
nuclear-explosion data set (R. W. Whitaker 2023). These
relations, because they are based on nuclear tests, assume a
point-source explosion, which differs from shock production
by asteroids and large meteoroids (a cylindrical line source
and/or a quasi-spherical source).

Studies by T. A. Ens et al. (2012) and N. Gi & P. Brown
(2017) built on point-source explosions to produce empirical
Ets calibrated to bolide observations. Both of these studies
utilized bolide events listed on the Center for Near-Earth
Object Studies (CNEOS) Ereball database, maintained by the
National Aeronautics and Space Administration’s Jet Propul-
sion Laboratory. These bolides were detected by US govern-
ment (USG) sensors from space (E. Tagliaferri et al. 1994),
providing details such as location, time, and altitude of peak
brightness. In some cases, the velocity vector is also available;
this allows a tentative estimation of the heliocentric orbit
(E. Peña-Asensio et al. 2022). Importantly, the CNEOS
database includes total radiated energy (in joules) and impact
energy (in kilotons) derived from Lashes produced by bolides
in the atmosphere and observed by USG space-based
instruments in the silicon bandpass (E. Tagliaferri et al.
1994; P. Brown et al. 2002). The USG-derived energy
estimates have been found to be robust (J. Borovička et al.
2015; H. A. R. Devillepoix et al. 2019; K. S. Wisniewski et al.
2024), thereby providing an important benchmark for validat-
ing and reEning energy estimates derived from empirical
infrasound-based relations. Currently, the light curves for the
bolides that occurred prior to and including 2022 have been
made available.

To derive period-based energy relations, T. A. Ens et al.
(2012) compiled 63 CNEOS bolide events detected by 113
infrasound stations globally. They also used period measure-
ments from multistation detections of a single event to show
that averaging can reduce the scatter of data points (relative to
the line deEned by these relations). Their relations are updated
here from their original form (Table 1) to reLect yields in

kilotons and to correct minor typographical errors present in
the published literature. The correction from tons to kilotons
was done by reducing the original coefEcient B by 3 (i.e., log
(1000)= 3). Remarkably, the relation with averaged periods
was very similar to that by D. O. Revelle (1997).
Drawing on data from 78 CNEOS bolides detected by 179

stations, N. Gi & P. Brown (2017) established two additional
relations, one that applies to all detections, and another that
uses averaged periods for multistation detections (Table 1). A
portion of their data set included bolides from T. A. Ens et al.
(2012). Their Ets from this larger data set, however, are
notably different, illustrating the need to rigorously evaluate
the sensitivity of periods to energy and examine the robustness
of period-based energy relations when applied to global bolide
events. Although N. Gi & P. Brown (2017) examined a few
bolides in greater detail by incorporating their light curves,
neither they nor earlier studies integrated light-curve analyses
across a large number of events to directly connect energy-
deposition modes with inferred energy estimates.
The Ets from all these period-based energy relations are

shown in Figure 1. As with any empirical regression, these
relations differ in slope and intercept due to differing
calibration data sets, some focusing on smaller bolide events,
others on nuclear explosions, and still others on partially
idealized assumptions about the source function. Depending
on the signal period length and the selected energy relation, the
discrepancy in estimated yields can range from minor to over
an order of magnitude. This outcome shows that both the
choice of period–energy relation and whether data originate
from single or multiple stations play signiEcant roles in
determining the Enal yield.
Many of the early infrasound-based yield estimations also

incorporated amplitude relations, acknowledging that signal
amplitude could, in principle, map to explosive source energy.
However, amplitude-based Ets typically demand substantial
propagation corrections, particularly for range and atmospheric
conditions, rendering them more sensitive to local winds,
turbulence, and attenuation. By contrast, it can be argued that
the signal period is more robust against these propagation
effects, at least in the far Eeld, and thus has served as the
principal focus for most modern bolide energy studies.
Accordingly, despite the inherent scatter in station-by-station

Table 1
Compilation of Empirical Period-yield Relation CoefEcients

A B P* Units Source Notes

3.30 (±0.14) −1.89 (±0.10) P kt This study …

3.71 (±0.42) −2.07 (±0.21) P kt This study …

3.44 −2.57 P kt R. W. Whitaker (2023) …

3.68 −1.99 P kt N. Gi & P. Brown (2017) …

3.84 −2.21 P kt N. Gi & P. Brown (2017) …

3.75 0.50 P t T. A. Ens et al. (2012) Original form

3.75 −2.50 P kt T. A. Ens et al. (2012) Units corrected to kt

3.28 0.71 P t T. A. Ens et al. (2012) Original form

3.28 −2.29 P kt T. A. Ens et al. (2012) Units corrected to kt

3.26 −2.40 P kt R. Whitaker & J. Mutschlecner (2006) …

3.34 −2.28 P kt D. O. Revelle (1997) E < 200 kt

4.14 −3.31 P kt D. O. Revelle (1997) E > 80 kt

Note. The original T. A. Ens et al. (2012) relations were given in tons of TNT; here, we also present the corrected expressions in kilotons and address minor

typographical errors that have appeared in the literature. P* represents the signal period at each station (P) or the signal period averaged (P ) across all stations that

detected a given event.
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period measurements, period-based relationships have
remained the mainstay for rapid yield estimations.

The amplitude-based formulae are beyond the central scope
of our paper. We include them for completeness and
transparency in Appendix A (Tables A1–3). The tables
consolidate the sometimes disparate approaches and correct
for minor unit inconsistencies or typographical misprints that
have appeared in past literature.

Over the last few decades, the empirical period–energy
relations have formed the backbone of infrasound-based yield
estimation, with the nuclear-explosion-derived relations
(D. O. Revelle 1997) historically serving as a simple and
widely used benchmark. Because these period–energy Ets
require no detailed knowledge of event geometry or atmo-
spheric proEles, they have remained attractive, despite
recognized shortcomings such as station-dependent period
variations (T. A. Ens et al. 2012). While subsequent studies
(e.g., T. A. Ens et al. 2012; N. Gi & P. Brown 2017) have
expanded the event catalogs and offered more robust multi-
station period averaging approaches, a universal “global”
regression still fails to adequately capture the complexity
arising from more nuanced effects from atmospheric propaga-
tion and varied bolide deposition proEles. These complexities
also reLect a broad range of meteorite properties, as meter-
scale objects that generate noticeable infrasound signals
frequently arrive at Earth already weakened by prior collisions
(J. M. Trigo-Rodriguez & J. Blum 2009; E. Beitz et al. 2016).
Fragmentation can lead to increased ablation due to a higher
surface/volume ratio.

Bolides can produce infrasound signals whose measured
periods differ considerably from station to station, in part
because each receiver can sample a distinct segment along the
bolide path, each with potentially different effective burst
altitudes or local fragmentation episodes (E. A. Silber et al.
2009; E. A. Silber 2025). In principle, this would suggest the
need to partition events not only by standard parameters such

as velocity or altitude but also by more nuanced factors such as
the number of fragmentation episodes in a single event, the
density or dynamic strength, and the entry geometry
(e.g., altitude, entry angle). Earlier works largely acknowl-
edged this complexity (e.g., T. A. Ens et al. 2012; N. Gi &
P. Brown 2017), but typically did not incorporate it into a
uniEed regression framework.
Amplitude-based relations for both artiEcial explosive

sources (e.g., A. D. Pierce et al. 1971; J. Stevens et al. 2002;
J. P. Mutschlecner & R. W. Whitaker 2009) and bolides
(W. N. Edwards et al. 2006; T. A. Ens et al. 2012) have also
been developed, yet they suffer even more strongly from range
and atmospheric effects (e.g., J. Stevens et al. 2002) and thus
remain less reliable than period-based yield estimations. In
light of these challenges, there is an obvious need to broaden
the analysis of period–energy correlations using a more
advanced framework that accounts for geometry (angle,
altitude), physical parameters of bolides (mass, diameter),
and light-curve classiEcation (single versus multiple “bursts”).
When a meteoroid or an asteroid enters Earth’s atmosphere at

velocities of tens of kilometers per second (11.2–∼72 km s−1),
it travels far above the local speed of sound. As it descends into
denser atmospheric layers, it becomes luminous and forms a
shock wave (V. A. Bronshten 1983; Z. Ceplecha et al. 1998;
E. A. Silber et al. 2018). Provided the object largely remains
intact, this shock behaves much like a cylindrical line source
because the hypersonic bolide continuously deposits energy
along its path. In such a regime, the shock front extends roughly
perpendicular to the trajectory and the pressure disturbances can
be approximated as a cylindrical wave expanding outward from
the Light path (M. N. Plooster 1970; D. O. ReVelle 1976). A
useful parameter here is the blast radius (R0) (M. Tsikulin
1970), which deEnes the radial distance from the bolide
trajectory within which the atmospheric pressure is signiEcantly
perturbed by the shock (A. A. Few 1969). Closer to the
meteoroid, the shock is strongly nonlinear (i.e., overpressures
exceed ambient pressure by a large factor), whereas beyond the
blast radius the wave transitions into a more linear or weakly
nonlinear regime (D. O. ReVelle 1976).
As a Erst approximation, higher energy deposition yields a

larger blast radius, shifting the shock signature toward lower
frequencies (longer periods). However, in practice, the picture
is more complicated. Atmospheric ablation can alter meteoroid
Low regimes (M. Moreno-Ibáñez et al. 2018; E. A. Silber
et al. 2018) and fragmentation events release energy in short
segments or discrete “bursts” (e.g., J. M. Trigo-Rodríguez
et al. 2021), which cause the shock wave to locally transition
from a cylindrical (line source) to a quasi-spherical (point
source) geometry (E. A. Silber & P. Brown 2019). In a
continuous Light with no major fragmentation, the shock
predominantly resembles a cylindrical wave trailing behind the
bolide. In contrast, an abrupt fragmentation (or airburst)
produces a dominant near-spherical expansion, and multi-
fragmentation events generate multiple overlapping quasi-
spherical shock regions along the trajectory, complicating how
the overall energy is distributed in time and space. In some
instances, the observed light curve represents the sum of light
curves generated by individual “daughter” objects produced
during a cascading fragmentation event. We discuss these
complexities further in Section 4, in the context of our results.
The bolide’s associated light curve can be diagnostic in

identifying these processes because its shape, duration, and

Figure 1. Log–log plot of energy vs. signal period comparing published
period–energy relations. Each line represents a different empirical Et:
D. O. Revelle (1997), R. Whitaker & J. Mutschlecner (2006), R. W. Whita-
ker (2023), and bolide-based relations from T. A. Ens et al. (2012) and N. Gi
& P. Brown (2017), the latter two of which include both single-station and
multistation (averaged) data. T. A. Ens et al. (2012) and N. Gi & P. Brown
(2017) calibrated the bolide energy relations against the USG sensor data,
while the other relations stem from calibration against nuclear-explosion data.
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peak structure are sensitive to fragmentation events and can be
leveraged to infer critical details about energy release and shock
formation (E. A. Silber & P. G. Brown 2014; E. A. Silber
2024b; T. C. Wilson et al. 2025). Figure 2 represents an idealized
schematic illustrating how a bolide’s fragmentation behavior can
lead to characteristic light-curve signatures. We omit a simple,
nonfragmenting asteroid case from our diagram. On the left, four
conceptual light curves are shown, each representing a distinct
breakup pattern: an airburst with a single narrow peak, a single-
point fragmentation with one broader peak, a discrete multipoint
fragmentation with a series of peaks, and a continuous multipoint
fragmentation producing multiple overlapping peaks. To the
right, each fragmentation type is shown with both steep and
shallow-entry trajectories, emphasizing how the bolide’s path
through the atmosphere inLuences the spatial distribution of
fragmentation episodes and the accompanying shock formation.
In a steep entry, the energy is deposited within a relatively narrow
vertical column, whereas a shallow entry spreads the disruption
over a longer atmospheric path. These variations in breakup
processes, combined with differences in entry angles, result in the
diverse light-curve shapes observed and offer clues about the
shock generation and total energy release of the bolide event.
Moreover, information gleaned from simultaneous infrasound
and light-curve analysis is of extraordinary importance for
improving our understanding of the atmospheric entry of rare
superbolides and assessing their potential to become hazardous
projectiles (J. M. Trigo-Rodríguez 2022).

Here, we investigate the impact of these processes in the
period-yield relationships using the CNEOS bolide light-curve

data. One of the primary objectives in this study was to infer
the mode of shock deposition through the analysis of light
curves, since they serve as a diagnostic for various physical
processes taking place during a bolide entry. We aim to
investigate possible links between types of shock, altitudes of
fragmentation episodes, and bolide parameters, and feed these
into the energy Ets to investigate the linkage. To evaluate the
robustness of the period-yield relations, we apply a bootstrap
model, a powerful statistical technique that repeatedly
resamples the data to produce multiple “bootstrapped” data
sets (B. Efron 1992; B. Efron & R. J. Tibshirani 1993). Each
resampling run estimates the parameters of interest (e.g., slope
and intercept in period–energy Ets) and the collection of those
estimates is used to derive robust conEdence intervals. The
bootstrap approach offers a more comprehensive view of the
variability and reliability of the derived coefEcients than a
single, static Et. In principle, testing the reliability of period-
based energy relations under diverse event conditions will
allow an assessment of the parameter ranges in which these
relations are most reliable, or where they fall short.

2. Methods

2.1. Bolide Data Set

A bolide infrasound detections database, including measured
signal parameters (see Appendix B), was compiled by drawing
on multiple published sources that focused on bolides detected
by US government sensors and subsequently listed on the
CNEOS website (E. A. Silber et al. 2011; T. A. Ens et al. 2012;

Figure 2. Idealized diagram, not drawn to scale and intended only as a rough conceptual representation, illustrates how a bolide’s fragmentation behavior affects the
resulting light curve. The left column shows four conceptual light curves, from a single-peaked airburst to continuous multipoint fragmentation, while the right
panels depict how different geometry scenarios might look for steep vs. shallow entries.
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N. Gi & P. Brown 2017; T. Ott et al. 2019; C. Pilger et al. 2020;
T. Ott et al. 2021; P. Hupe et al. 2024; E. Silber et al. 2024;
Figure 3). The CNEOS database supplies contextual metadata to
reported energy yields, such as event time, location, and
frequently a velocity vector and corresponding light curve data
(e.g., E. A. Silber 2024b; E. A. Silber & V. Sawal 2025). Where
velocity vectors were available (95 events), we derived entry
angles, azimuths, and orbital parameters based on the method of
E. Peña-Asensio et al. (2022), which then informed about each
bolide’s physical properties.

All but 10 bolides had infrasound signals detected by the
stations of the International Monitoring System (IMS) of the
Preparatory Commission for the Comprehensive Nuclear-Test-
Ban Treaty Organization, from which signal periods were
derived. To ensure consistency and verify data quality, we
recalculated source-to-station distances, back azimuths (direc-
tion of infrasound wave arrival at a station), and celerities
(deEned here as the average acoustic propagation speed from
source to receiver). We discarded any entries deemed outliers,
most notably those with anomalously large back azimuth
discrepancies (where the difference between observed and
theoretical values is >50°) or unrealistically high celerities
(>360 m s−1). In keeping with established energy-relation
derivations in prior studies, we also excluded signals that
traveled through the thermospheric waveguide (celerity
<220 m s−1 (P. T. Negraru et al. 2011)). Therefore, all events
have celerities between 220 and 360 m s−1 and back azimuth
deviations <50°.

This reEnement process yielded 138 distinct bolide events
and 362 total detections (Figure 3), constituting the largest
single consolidated data set of infrasound-detected CNEOS
bolides to date. Among these, 69 bolides were detected by one
station globally, whereas the remaining 69 were observed
across two or more infrasound stations worldwide. The
number of distinct stations that made detections was 59. Out
of these, 53 are IMS stations.

For these bolides, we retrieved event-speciEc atmospheric
proEles from the Ground-2-Space model hosted by University
of Mississippi (D. P. Drob et al. 2003; C. H. Hetzer 2024)

along each source–station path. Earlier work has shown that
Doppler shifts due to stratospheric winds can alter the
observed period by more than ∼10% (T. A. Ens et al. 2012).
However, they also noted that uncertainties in wind velocity
can be as large as the mean itself, and therefore did not correct
for Doppler shift. In this study, we explore both raw and
Doppler-corrected measured periods. We make Doppler shift
corrections following the approach outlined in D. O. ReVelle
(2010). Since infrasound propagation is assumed to be
dominated by the stratospheric waveguide, we consider the
altitude span of 40–60 km in a range-dependent fashion,
computing mean and standard deviation values of the wind
Eeld. We also accounted for temporal variations, which is
particularly relevant for long-distance infrasound paths
requiring multihour propagation.
Figure 4 provides histograms illustrating the distributions of

bolide parameters available in our data set, including (top row)

peak-brightness altitude, source-to-station distance, and entry
velocity; (middle row) total energy (on a log scale), entry
angle, and impactor diameter; and (bottom row) dynamic
strength (also log-scaled), impactor density, and the Tisserand
parameter. The Tisserand parameter is a near-constant measure
in the restricted three-body problem (e.g., Sun–planet–small
body) that characterizes how a smaller object’s orbit changes,
or fails to change, before and after a close planetary encounter.
In practical terms, the Tisserand parameter computed with
respect to a given planet helps categorize interplanetary bodies
(e.g., comets versus asteroids) by capturing relationships
among orbital elements, such as semimajor axis, eccentricity,
and inclination. For instance, many Jupiter-family comets have
Tisserand values between 2 and 3 (C. D. Murray & S. F. Dermott
1999). Not all events in the database have complete information
for these parameters, which is reLected in some histograms having
lower counts than others. Nonetheless, these plots demonstrate the
range and diversity of bolide characteristics captured in our Enal
data set.
The CNEOS database hosts an inventory of light curves

(LCs) associated with most bolide events up to and including
most of 2022. Presently, these come in a PDF format, requiring
digitization. We gathered all available light curves, and then
digitized and processed them following the analysis and
classiEcation algorithm developed by E. A. Silber & V. Sawal
(2025). This algorithm, Bolide Light-curve Analysis and
Discrimination Explorer, uses the Savitzky–Golay Eltering,
prominence-based peak detection, and gradient analysis to
automate the identiEcation of fragmentation events and,
therefore, energy release modes. E. A. Silber & V. Sawal
(2025) devised Eve classiEcation schemes based on the light
curve features to extract the dominant process of energy
deposition (e.g., airburst, discrete fragmentation, and contin-
uous fragmentation). For the purposes of this study, we
adopted a simpliEed light curve classiEcation scheme: events
with a single, dominant fragmentation episode (LC class 1)

versus those exhibiting multiple fragmentation episodes,
whether continuous or discrete (LC class 2). This simpliEed
categorization enabled us to probe whether repeated fragmen-
tation episodes (LC class 2) might broaden the infrasound
signal relative to single-burst events (LC class 1), thereby
clarifying fragmentation-driven inLuences on the measured

Figure 3. Global map showing all 138 bolides (red circles) investigated in this
work and 59 distinct infrasound stations that recorded detections (gray
triangles).
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period. Only three events did not have the light curve
available.

We analyzed the light curves in two steps. First, we applied
our classiEcation algorithm to all available light curves to
determine their respective types. Second, for CNEOS events
that provided both a velocity vector and a peak-brightness
altitude, we anchored the altitude to the peak-brightness point
identiEed in the light curve and extrapolated the altitude range
from there. Here, as the Erst approximation, we assume
constant velocity. This approach allowed us to examine the
onset or conclusion of fragmentation events more thoroughly,
rather than focusing solely on the peak-brightness altitude. A
representative example of this step in our analysis is shown in
Figure 5. Here, we compare two distinct bolide fragmentation
scenarios by plotting light curve intensity (in W/Sr) against
both time and altitude. These examples demonstrate our
approach to discerned multifragmentation versus a single,
abrupt burst by analyzing the light curve shape and its
corresponding altitude proEle. As noted earlier, the fragmenta-
tion can be rather complex, where multiple fragmentation
episodes can be discrete or continuous (see Figure 2). In the
latter case, this could result in persistent emissions along the
wake. However, we do not make that speciEc differentiation

here, but rather focus on single burst versus multibursts,
regardless of how they might have occurred.

2.2. Ordinary Least Squares Partitioning

In their study, T. A. Ens et al. (2012) employed a
multivariate approach that factored in parameters such as
range and amplitude; however, their analysis did not account
for altitude or light curve classiEcation, both of which can
critically alter where and how shock energy is deposited along
the bolide trajectory. Moreover, amplitude-based Ets typically
require explicit propagation corrections, making range an even
more central parameter. In our study, by contrast, we focus on
period rather than amplitude, which lessens the need for direct
range corrections and enables us to isolate other physical
factors (e.g., altitude, multiepisode fragmentation) that might
inLuence the period–energy relationship.
Fundamentally, we adopt a log–log regression model of the

form: ( ) ( )= +P m E clog log . Recognizing that infrasound
detections can be inLuenced by source altitude, entry angle,
velocity, and similar parameters, we analyze not only the data
set as a whole but also partition it into subsets. For instance,
we might isolate only events below a certain altitude threshold

Figure 4. Histograms showing the distributions of bolide parameters available in our data set: peak-brightness altitude, source-to-station distance, entry velocity,
total impact energy (on a log scale), entry angle, impactor diameter, dynamic strength (also log-scaled), impactor density, and the Tisserand parameter.
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or within a speciEc velocity range; likewise, we can set
distance �1000 km or altitude <20 km. Each such partition
deEnes a data set subset for which we perform a distinct
ordinary least squares (OLS) Et. This step mitigates con-
founding effects (D. C. Montgomery et al. 2021) by preventing
a single, global Et from obscuring systematic differences in
event geometry or fragmentation type. Moreover, by initially
running OLS on narrowly deEned partitions and then applying
a bootstrap framework, we can gauge more transparently how
each parameter impacts the resulting slope and intercept. As in
previous studies, we pursue two approaches in our analysis: (1)

treating each station detection independently, and (2) comput-
ing a mean signal period for bolide events with multiple
stations, by averaging the individual detections across those
stations.

Within our database, each event at minimum includes the
signal period, the total impact energy reported by CNEOS (in
kt), and the source-to-station distance (in kilometers); in all but
one case, a peak-brightness altitude (in kilometers) is also
available. A subset of 135 bolides includes a light curve
classiEcation, and 95 bolides contain additional parameters (i.e.,
entry angle, velocity, mass, density, and diameter). Rows
missing a speciEc parameter are excluded only from analyses
involving that variable, thus preserving the maximum number of
valid records for partitions that do not rely on it. For each
partition (e.g., distance �1000 km, altitude <20 km, velocity
<20 km s−1, etc), we perform Etting (D. C. Montgomery et al.
2021) using the statsmodels.api.OLS routine in Python, yielding
a slope m̂ and intercept ĉ. We also apply bin permutations

of up to Eve parameters in the analysis. Since many published
energy–period formulas use the inverted form: ( ) =Elog

( ) +A P Blog , we convert via ˆ/=A m1 and ˆ/=B c1 ,
enabling direct comparisons with reference relations in the
literature (e.g., T. A. Ens et al. 2012; N. Gi & P. Brown 2017;
and D. O. Revelle 1997). A single OLS pass produces one pair
( ˆ ˆ)m c, , and hence one pair ( )A B, . However, we also seek to
characterize uncertainties, given that small sample sizes or
physically diverse events can cause signiEcant variance in slope
estimates. Consequently, a bootstrap framework is employed to
estimate conEdence intervals for ( ˆ ˆ )m c A B, , , , hereby assessing
the reliability of each partition’s Et under repeated sampling.

2.3. Bootstrap Approach for Period–Energy Fitting

To robustly estimate the variability and conEdence intervals
of our Etted slope/intercept pairs, and their inverted counter-
parts, we employ a bootstrap sampling framework
(B. Efron 1981, 1992; B. Efron & R. J. Tibshirani 1993;
T. Hastie et al. 2009). For each partition of the data set, we
draw the same number of rows as in the original subset with
replacement, repeatedly generating “pseudo-data sets.” We
then Et the OLS model ( ) ( )= +P m E clog logi i on each
pseudo-data set and invert the resulting slope and intercept. By
iterating this process n times (n= 2000), we accumulate sets

{ }m c,i i and{ }= =A B,i
m

i
c

1 1

i i

, corresponding to each boot-

strap iteration i. From these distributions, we obtain not only
the means ( )A B, but also standard deviations and 95%
conEdence intervals.

Figure 5. Representative examples of different classes of light curves, plotted as a function of the USG-provided time (left) and calculated altitude assuming no
deceleration (right). Panels (a) and (b) show LC class 1, depicting a single dominant fragmentation event, where a single abrupt peak unfolds within 2 s and spans
only about 4 km in altitude (37–33 km). This single fragmentation event is consistent with a classic “airburst” in which the entire object is abruptly vaporized due to
the fragmentation. Panels (c) and (d) show LC class 2. This is a multifragmentation event, with multiple bursts across 4 s and an altitude range from 48 km down to
35 km, indicative of energy deposition over 13 km.
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A key point is that we transform each pair ( )m c,i i

individually into ( )A B,i i . This captures the true variability of
the inverted parameters ( ) ( )E Plog log , rather than merely
inverting the mean slope m. Indeed, ˆ/A m1 once distribu-
tions are nonlinear. After n bootstrap iterations, we collect
distributions { }mi , { }ci , { }Ai , { }Bi . We then compute the mean
values m, c , A , B , along with their standard deviations.
Moreover, we derive conEdence intervals in two ways: (i)
normal approximation ( ±A z A and ±B z B for 95%
intervals, where z= 1.96), which is appropriate if { }Ai and
{ }Bi are roughly symmetric and (ii) percentile-based, where we
take the empirical 2.5th and 97.5th percentiles of{ }Ai and { }Bi .
This is often more robust if the distributions are skewed or if
normality is not a good approximation. Comparing these two
intervals helps us assess the degree of symmetry or skew in the
underlying distributions.

To discern how speciEc parameters, such as source-to-
station distance, peak-brightness altitude, entry angle, impact
velocity, or impactor properties, affect the period–energy
relation, we subdivide the data set into bins. For instance,
distance bins might include (d� 1000, � 3000, � 5000,
� 10,000, all) while altitude bins include (zpb< 20, < 30,
< 40, all). We then run separate bootstrap-based OLS Ets for
each bin (or bin combination), storing: (1) the number of data
points N in that subset, (2) the mean m, c , A , B with their
standard deviations and conEdence intervals, and (3) a
diagnostic Egure comparing the resulting line to existing

references. A similar procedure applies to partitions deEned by
entry angle (<30°, 30°−60°, >60°), mass bins, density ranges,
velocity, diameter thresholds, and light-curve class classiEca-
tions. This partition-based, multiparameter nested approach
systematically tests whether, for instance, shallow-entry versus
steep-entry bolides or high-altitude versus low-altitude bursts
exhibit distinct slope–intercept behaviors. By combining
partitioning with a bootstrap framework, we obtain a clearer,
more statistically robust picture of how each subset’s period–
energy Et varies, and the degree of conEdence we can place in
that variation.

3. Results

3.1. Ordinary Least Squares Results

Table 2 presents the results from the OLS analysis for
different subset of bolides. N is the number of subset samples.
The Et parameters A and B are given from both uncorrected
and Doppler-wind corrected data. The classical regression
coefEcient is given also. In single detections, the coefEcients A
and B across 31 primary populations, binned by up to
two parameters, were 3.47± 0.49 and −1.88± 0.24, respec-
tively. SpeciEcally, the range was 2.60� A� 5.03, and
−2.26� B�−1.18. While the absolute differences in the
regression coefEcients A and B may seem modest in numerical
terms, they reLect statistically and physically signiEcant
deviations among partitioned populations.

Table 2
Summary of Regression CoefEcients A and B Derived Through OLS Across all Detections

Doppler Corrected

Distance N A B r2 A B r2

(km)

global 362 3.29 −1.88 0.59 3.28 −1.88 0.58

d = all, z < 30 km 163 2.88 −1.52 0.67 2.87 −1.52 0.67

d = all, z < 40 km 282 3.15 −1.77 0.63 3.13 −1.76 0.62

d � 1000 km, z < 30 km 11 3.10 −1.60 0.66 2.99 −1.55 0.66

d � 1000 km, z < 40 km 27 3.23 −1.70 0.55 3.18 −1.70 0.52

d � 1000 km, z = all km 37 3.60 −1.89 0.47 3.60 −1.92 0.43

d � 3000 km, z < 30 km 63 3.55 −1.78 0.57 3.45 −1.72 0.58

d � 3000 km, z < 40 km 141 3.88 −2.04 0.47 3.82 −2.01 0.46

d � 3000 km, z = all 198 4.16 −2.22 0.38 4.11 −2.19 0.37

d � 5000 km, z < 30 km 95 3.24 −1.68 0.60 3.11 −1.61 0.61

d � 5000 km, z < 40 km 206 3.59 −1.96 0.50 3.50 −1.92 0.50

d � 5000 km, z = all 279 3.82 −2.11 0.43 3.74 −2.07 0.42

d � 10,000 km, z < 30 km 143 3.01 −1.57 0.65 2.98 −1.56 0.65

d � 10,000 km, z < 40 km 260 3.32 −1.84 0.60 3.29 −1.83 0.59

d � 10,000 km, z = all 340 3.49 −1.97 0.54 3.46 −1.95 0.53

θ < 30°, v � 20 km s−1 69 3.00 −1.81 0.72 2.96 −1.76 0.71

θ < 30°, v = all 84 2.95 −1.69 0.72 2.92 −1.65 0.72

30°�θ < 60°, v < 20 km s−1 70 4.09 −2.15 0.33 3.92 −2.15 0.30

30°�θ < 60°, v = all 88 4.43 −2.23 0.31 4.32 −2.25 0.28

θ�60°, v � 20 km s−1 101 3.59 −2.10 0.57 3.57 −2.07 0.57

θ�60°, v = all 107 3.61 −2.11 0.57 3.57 −2.07 0.56

θ = all, v � 20 km s−1 240 3.25 −1.86 0.65 3.26 −1.88 0.62

θ = all, >20 km s−1 39 5.03 −2.26 0.27 4.91 −2.17 0.30

1e5 � mass < 1e8 134 3.00 −1.65 0.44 3.05 −1.72 0.42

2000 � dens < 3500 171 3.83 −2.19 0.38 3.77 −2.18 0.37

dens � 3500 83 2.60 −1.18 0.69 2.64 −1.22 0.71

1 � diam < 10 260 3.64 −2.04 0.51 3.64 −2.05 0.49

diam = all 277 3.27 −1.83 0.62 3.27 −1.84 0.61

LC = 1 156 3.31 −1.92 0.46 3.26 −1.86 0.46

LC = 2 203 3.33 −1.88 0.59 3.30 −1.88 0.58

LC = all 359 3.29 −1.88 0.59 3.28 −1.87 0.58
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Table 3 presents the same data but for averaged-period
detections. The coefEcients A and B across 18 primary
populations, binned by up to two parameters, were
3.63± 0.37 and −1.92± 0.22, respectively. SpeciEcally, the
range was 2.85� A� 4.21, and –2.18� B�−1.34.

Figure 6 illustrates the distribution of best-Et coefEcients A
and B obtained from our OLS regressions across a range of
bolide subsets. We performed a total of 509 Ets for single-
station detections, each corresponding to permutations of up to
Eve parameters (e.g., altitude, distance, velocity, fragmentation
type, and light curve class), and 126 Ets for multistation
averages (where distance was excluded). After removing any
partition with insufEcient data (N< 20 in single detections,
N< 10 in averaged periods), we retained 274 and 70 pairs of
coefEcients, respectively.

Visually, the single-station data (blue points) cluster in a
diagonal pattern, reLecting the fact that more negative
intercepts (B) occur at higher slopes (A). The orange points
from multistation averages appear more tightly grouped,
reLecting the often more stable period estimates when multiple
stations contribute to a single, averaged period. These results
emphasize both the overall trend and the variability inherent in
subdividing bolide data by altitude, distance, and other
parameters. We also overlaid coefEcients from earlier studies
alongside our best Ets. Across all single-station and averaged-
period detections, respectively, our global regression yields:

( ) ( ) ( )=E Plog 3.29 log 1.88, 2

( ) ( ) ( )=E Plog 3.65 log 2.05. 3

Some bins suggest a strong correlation between period and
energy when the shock is observed closer to ground level and
is less “smeared” by propagation. Tails at the lower end of the
slope distribution arise in scenarios where energy release is
more spread out, either by shallow geometry or multi-
fragmentation combined with distant station observation.

Figure 7 illustrates the overall variability and spread across
all results in the form of histograms, subdivided by single
(Figures 7(a) and (c)) and averaged populations (Figures 7(b)

and (d)), and A and B coefEcients.

Since our data set is substantially larger than in previous studies,
we also performed the Etting using Doppler-corrected periods
(D. O. ReVelle 1974). Across all single-station and averaged-
period detections, respectively, our global regression yields:

( ) ( ) ( )

( )

=E Plog 3.28 log 1.88 Doppler corrected periods ,

4

( ) ( ) ( )

( )

=E Plog 3.60 log 2.01 Doppler corrected periods .

5

Compared to the noncorrected data, the resulting coefE-
cients differed by only about 1.2% on average, with a
maximum deviation of 4.3% in both coefEcients A and B.
This outcome is consistent with T. A. Ens et al. (2012), who
similarly concluded that Doppler corrections have little effect
when deriving period-based relations for a global population.
Nevertheless, Doppler effects may still be important for

Table 3
Summary of Regression CoefEcients A and B Derived Through OLS Across Averaged Period Events

Doppler Corrected

Distance [km] N A B r2 A B r2

global 138 3.65 −2.05 0.45 3.60 −2.01 0.46

d = all, z < 30 km 35 3.07 −1.60 0.71 3.05 −1.57 0.71

d = all, z < 40 km 94 3.31 −1.78 0.55 3.27 −1.74 0.55

θ < 30°, v � 20 km s−1 19 3.80 −2.12 0.54 3.78 −2.10 0.54

θ < 30°, v = all 27 3.50 −1.86 0.59 3.51 −1.86 0.59

30° � θ < 60°, v < 20 km s−1 36 4.11 −2.05 0.37 4.05 −2.00 0.37

30° � θ < 60°, v = all 44 4.21 −2.04 0.37 4.12 −1.99 0.37

θ � 60°, v � 20 km s−1 21 3.53 −1.96 0.70 3.51 −1.96 0.68

θ � 60°, v = all 24 3.67 −2.10 0.62 3.65 −2.09 0.60

θ = all, v � 20 km s−1 76 3.66 −1.96 0.56 3.62 −1.93 0.55

θ = all, >20 km s−1 19 3.69 −1.82 0.43 3.69 −1.82 0.44

1e5 � mass < 1e8 19 3.14 −1.69 0.44 3.13 −1.68 0.43

2000 � dens < 3500 67 4.08 −2.16 0.36 3.99 −2.10 0.36

dens � 3500 15 2.85 −1.34 0.77 2.84 −1.33 0.77

1 � diam < 10 93 4.10 −2.16 0.44 4.05 −2.12 0.44

diam = all 96 3.71 −1.97 0.52 3.67 −1.94 0.52

LC = 1 41 3.63 −2.13 0.40 3.61 −2.11 0.40

LC = 2 94 3.95 −2.12 0.41 3.91 −2.09 0.41

LC = all 135 3.69 −2.05 0.45 3.66 −2.03 0.45

Figure 6. Distributions of OLS-derived coefEcients A and B for both single-
station (blue points) and multistation averaged (orange points) period Ets.
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individual-event analyses because the averaging over numer-
ous events can mask or dilute any single-event corrections.

To illustrate this point, we plotted the effect of Doppler
shifts on measured infrasound periods (Figure 8). Figure 8(a)

shows wind velocities along each source–station path for
which wind data was available, with the shaded region
highlighting distances of up to 6000 km where wind speeds
often exceed ±50 m s−1. Figure 8(b) compares the Doppler-
corrected and raw measured periods, demonstrating that most
points cluster near the 1:1 line, although some events deviate
substantially at longer periods. The absolute difference
between the Doppler-corrected and raw periods (Figure 8(c))

reveals that corrections can shift the period by several seconds,
especially for greater source–station separations or higher
wind speeds. Figure 8(d) “zooms in” to 14 s, and more closely
shows that most points lie near the 1:1 line.

3.2. Bootstrap Approach Results

Using a bootstrap approach, we derived A and B coefEcient
pairs with their respective standard deviations and conEdence
bounds. Similar to the OLS analysis performed prior to this,
for single-station detections, we included source-to-station
distance as a factor, whereas for multistation average periods
we excluded it. Alongside global A and B pairs, we produced
over 500 subset Ets, each reLecting permutations of up to Eve
parameters in a given subgroup. Before examining the
correlations, we discarded any results with N< 20 for single
detections and N< 10 for averaged detections. Further to this,
we examined coefEcient standard deviations and removed poor
Ets (i.e., large standard deviations), thereby ensuring only
robust regressions were carried forward in the analysis. We
were left with 250 and 50 pairs of coefEcients A and B,
respectively, for single detections and averaged detections.
The global Ets with uncertainties are as follows:

( ) ( ) ( ) ( ) ( )= ± ±E Plog 3.30 0.14 log 1.89 0.10 , 6

( ) ( ) ( ) ( ) ( )= ± ±E Plog 3.71 0.42 log 2.07 0.21 . 7

Doppler-corrected periods yield coefEcients A and B that
closely match those in Equations (6) and (7), remaining well
within their respective uncertainties.

Figure 9 shows the coefEcient A and B pairs for single (navy
blue circles) and averaged detections (diamonds). We opted
against plotting the error bars because they obscure the plot. For
context, we also plotted single detections derived through the OLS
method (light green circles). The global Ets with error bars are
shown with a triangle (Equation (6)) and square (Equation (7)).
For additional context and to compare the outcomes from the

two Etting approaches, we plotted the distributions of coefEcients
A and B under both OLS (hatched bars) and bootstrap (solid bars)
approaches (Figure 10). Figures 10(a) and (b) display histograms
of coefEcients A and B for single detections and Figures 10(c)
and (d) for averaged detections. This allows a straightforward
visual comparison of how each method inLuences the coefEcient
estimates for single versus averaged detections.
Figure 11 provides an at-a-glance summary of the coefEcient A

and B for various subsets of single and averaged detections. Each
label indicates a subset’s primary parameter (e.g., altitude,
distance, entry angle, light curve class, or yield range), and the
corresponding sample size (N). This Egure also shows published
coefEcients from N. Gi & P. Brown (2017), T. A. Ens et al.
(2012), and D. O. Revelle (1997), plotted as vertical lines for A
and reference lines for B, to place the new results in context. This
layout allows a straightforward comparison of how each subset’s
best-Et slope (Figure 11(a)) and intercept (Figure 11(b)) compare
to previously reported values, motivating an evaluation of how
parameters such as altitude, range, or fragmentation behavior
might inLuence the period–energy relationship.
In Figure 12, we show the bolide period-yield regression Ets

obtained through this study and compared to all earlier studies
(Figure 12(a)). Single detection Ets and averaged Ets are shown in
Figures 12(b) and (c), in the context of relevant earlier studies.
Finally, the global Ets derived through bootstrap method alongside
Ets for LC1 and LC2 populations are shown in Figure 12(d).

3.3. Period and Yield versus Multiparameter Variables

We computed Spearman correlation (C. Spearman 1904)

matrices to examine how primary parameters relate to one
another across our bolide data set. The parameters are period,
CNEOS energy, impact velocity, entry angle, altitude of peak
brightness, meteoroid density, meteoroid diameter, and meteoroid
dynamical strength. The Spearman’s rank correlation coefEcient

Figure 7. Histograms showing the spread in coefEcients A and B as a function of populations of single and averaged detections. These include all our Ets after
outliers were removed.
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is a nonparametric measure of how two variables covary in a
monotonic manner, using rank orders rather than raw values. By
forgoing assumptions of linearity and normality, it remains robust
in the presence of outliers or skewed data, capturing whether one
variable consistently increases or decreases with the other.

Figure 13 presents correlation matrices for averaged-period
bolides. Figure 13(a) includes the entire data set, while
Figures 13(b) and (c) show two primary fragmentation classes,
LC class 1 (single-burst or airburst events) and LC class 2
(multifragmentation). Each cell in the matrices is color-coded
according to the strength and sign of the correlation, with red
indicating a positive correlation and blue a negative correlation.
As expected, the highest correlation coefEcient is between

CNEOS energy and meteoroid diameter. The meteoroid diameter
is typically estimated from the reported yield. However, we also
see a strong correlation when the diameter is independently
measured from cosmogenic nuclides in recovered meteorites
(e.g., P. Jenniskens et al. 2009; P. Jenniskens et al. 2021).
Another strong correlation exists between dynamical strength and
meteoroid density, both parameters are related to the atmospheric
altitude at which key phenomena are observed. CNEOS energy
and period are less correlated, reLecting the inLuence of other
parameters in the relation.
To explore the relationship between bolide energy and the

maximum distance at which the infrasound signal was
detected, we plotted the detection range as a function of
satellite-estimated yield (Figure 14). Examining this trend
provides a straightforward means of assessing how far
infrasound from a given bolide might travel before dropping
below detectability thresholds. As in previous work (e.g.,
T. A. Ens et al. 2012), an empirical upper-range curve can be
superimposed to represent a typical outer envelope of observed
detections, thereby highlighting how wind conditions or other
propagation effects can extend (or limit) the observable range
for lower-energy events. This approach also offers a simple

Figure 8. (a) Wind velocity along the source–station path, plotted against propagation distance. (b) Doppler-corrected vs. measured period. (c) Difference between
Doppler-corrected and measured periods, showing distance-dependent variations. (d) Zoomed-in version of (b) for shorter periods, again showing how stratospheric
winds can alter observed infrasound periods.

Figure 9. CoefEcient A and B pairs for single detections (navy blue circles)
and averaged detections (diamonds). Single detections derived with OLS (light
green circles) are also shown, but some extreme points are cut off in this
zoomed in version. Error bars for individual points are omitted to maintain
clarity. The global Ets, with error bars, appear as a triangle (Equation (4)) and
a square (Equation (5)).
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visualization for distinguishing bolide signals from other
atmospheric sources by illustrating whether an observed
detection range is consistent with the event’s reported yield.
Our expression for detection range, with energy in units of kt
and distance in units of km, is:

( ) ( ) ( )= +R Elog 0.28 log 3.85. 8

4. Discussion

4.1. OLS versus Bootstrap and Value of Subgroup Binning

OLS provides a straightforward point estimate of the best-Et line
under classic linear regression assumptions, while bootstrap
resampling quantiEes how sensitive those OLS results are to
variations in the underlying data. The close agreement between the
OLS (Figures 6 and 7) and bootstrap-derived results (Figures 9 and
10) reinforces the stability of our core period–energy relationships,

demonstrating that removing or resampling small subsets of events
does not drastically alter the estimated slopes (A) or intercepts (B).
The bootstrap analysis further indicates where outlier events or
small partitions (e.g., bins characterized by shallow angles and low
altitudes) can yield slope–intercept pairs that can deviate from the

“typical” 3–4 slope region and −2 intercept. While OLS averages
over these extremes, the bootstrap approach (see tails in Figures 9
and 10) illuminates their frequency and variability, providing
robust conEdence measures for each subgroup Et. By applying
multiparameter binning, using both OLS and bootstrap, we identify
distinct phenomena such as steeper slopes at low altitudes and

short ranges, and shallower slopes at shallow angles or distant
stations. Our Endings (as depicted in Figures 9 and 10) conErm
that these variations are physically meaningful and represent
distinct shock-physics regimes, thereby supporting the need for
subgroup-speciEc Ets rather than relying on a single universal
formula.

Figure 10. Histograms of coefEcients A and B for single detections (panels (a) and (b)) and averaged detections (panels (c) and (d)). The OLS results are shown with
hatched bars, while the bootstrap results are shown with solid bars. Note that the axes scale is different in all panels.

Figure 11. CoefEcients A (a) and B (b) from ( ) ( )= +E A P Blog log , plotted for numerous bolide subgroups. Each point represents a distinct partition (e.g., by
altitude, angle, distance, or fragmentation type), with error bars indicating Et uncertainties. Reference lines from N. Gi & P. Brown (2017), T. A. Ens et al. (2012),
R. Whitaker & J. Mutschlecner (2006), R. W. Whitaker (2023), and D. O. Revelle (1997) are shown for comparison, demonstrating how geometry (e.g., shallow vs.
steep angles) and multifragmentation (LC class 1 vs. 2) can shift slopes and intercepts away from classic global values. The circles and diamonds represent Ets for
single-station and averaged events, respectively.
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4.2. Sensitivity of Coef�cients A and B

Our expanded data set exhibits signiEcant variability in
coefEcients A (slope) and B (intercept), reLecting the complex
interplay of geometry, fragmentation type, and propagation
effects in period–energy relationships. Although our global Ets
(Equations (2)–(5)) generally conform to earlier literature
(e.g., D. O. Revelle 1997; T. A. Ens et al. 2012; N. Gi &
P. Brown 2017), partitioning the data by altitude, angle,
distance, or multifragmentation yields values of A that may
exceed 4.0 or fall to 2.5–3.0, suggesting a wider parameter
space than that provided by a single global Et. These variations
can be attributed to shock-physics principles. Deeper or
steeper trajectories yield stronger coupling between energy
and the dominant period, whereas shallower entries or large
station distances dilute period sensitivity to energy. Equally
important, multifragmentation (LC class 2) tends to amplify
period changes relative to single bursts (LC class 1) because
overlapping bursts (i.e., increased energy deposition through
fragmentation episodes) or superposition of higher-frequency
peaks reinforce low-frequency signal components.

Considerable scatter is observed in both the original data sets
(often nuclear-test signals) and the subsequent bolide analyses
(e.g., E. Mas-Sanz et al. 2020; E. A. Silber 2024a). Such scatter
might arise for reasons spanning signals emanating from different
parts of the trajectory (E. A. Silber et al. 2009; E. A. Silber
2024a), altitude effects (W. N. Edwards et al. 2006), source-to-

station range effects (N. Gi & P. Brown 2017), station geometry
(C. Pilger et al. 2015), station noise (J. R. Bowman et al. 2005),
wind-driven Doppler shifts (T. A. Ens et al. 2012), and
measurement uncertainties (P. Golden & P. Negraru 2011).
Though infrasound signal period, compared to signal amplitude,
is less sensitive to range, it might still exhibit variations because
stations may receive signals from different portions of the bolide
path (E. Silber & D. C. Bowman 2025; E. A. Silber 2025).
Furthermore, the range of shock conEgurations (from straightfor-
ward cylindrical line sources to localized quasi-spherical
explosions) might plausibly explain the signiEcant scatter in
simple period–energy relations. Thus, determining the prevailing
shock geometry (cylindrical versus quasi-spherical) is critical for
accurately linking measured infrasound periods to underlying
energy-deposition physics. We further discuss these points in the
next sections.

4.3. Light-curve Classi�cation and the Fragmentation Process

Despite their practical utility in distinguishing single-burst
(LC class 1) from multiburst (LC class 2) bolides, CNEOS
light-curve records have inherent limitations. These records
often capture only the brightest segments of a bolide’s
luminous path, often omitting earlier or later phases of
ablation. Moreover, the absence of satellite sensor speciEca-
tions (e.g., spectral response, dynamic range, or Eeld of view)

and undisclosed platform positioning precludes robust

Figure 12. Log–log plot of total impact energy vs. signal period comparing (a) published period–energy relations and those derived in this study. Fits for ingle
station detections (b) and averaged periods (c) are plotted separately alongside earlier studies. In panel (d), we show the global Ets alongside LC1 and LC2
(averaged).
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Figure 13. Correlation matrices for averaged-period bolides across (a) all events, (b) single-burst (LC class 1) events, and (c) multiburst (LC class 2) events. Each
panel shows pairwise Spearman correlation coefEcients among various parameters: infrasound period, CNEOS energy, entry angle, velocity, diameter, density,
dynamic strength, and peak-brightness altitude. 14
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correction for parallax or viewing-angle effects. Although the
reported velocities and altitudes may carry inherent uncertainties
(H. A. R. Devillepoix et al. 2019; M. Hajduková et al. 2024), these
do not impact the present study. Nonetheless, the light-curve data
near peak brightness remains invaluable for determining whether a
bolide undergoes a single dominant burst or multiple discrete
fragmentation episodes. Even with partial coverage and uncertain
sensor calibration, the light-curve signal provides essential
information regarding the timing and energy release pattern,
allowing classiEcation into LC class 1 or LC class 2. Furthermore,
when combined with a velocity vector (if available), the data
allow for reconstruction of the approximate altitude span of peak
brightness and fragmentation (E. A. Silber & V. Sawal 2025), an
invaluable constraint when evaluating both the shock-formation
details and the potential for multiepisode bursts.

For LC class 1 events, most of the bolide’s energy is released
abruptly as a single disruption, typically transitioning from a near-
cylindrical shock to a quasi-spherical expansion. Consequently,
this conEguration often yields moderate period–energy slopes
(Figure 12(d)) because the limited fragmentation constrains shock
complexity. In contrast, LC class 2 events tend to yield steeper
slopes because they exhibit multiple bursts along the bolide’s path,
with each releasing a signiEcant fraction of the total energy. From
a shock-physics perspective, these overlapping bursts effectively
stack quasi-spherical expansions along the Light, broadening the
low-frequency infrasound signature. Consequently, when bolide
light-curve data are available, the relationships presented in
Table 2 offer more reliable yield estimates.

4.4. Effects of Entry Geometry and Fragmentation on Period–
Energy Relations

Bolide entry geometry strongly inLuences shock development
and propagation, thereby shaping the log(E)–log(P) relationship
from our regression analyses. Fundamentally, a bolide traveling
steeply at low altitudes concentrates its energy in a narrow near-
cylindrical or quasi-spherical shock region, resulting in sharper
period–energy gradients. In contrast, shallow or high-altitude
trajectories introduce more complex shock interactions and
extended propagation paths that weaken the energy–period
correlation. This observation that steeper angles and lower
altitudes correspond to higher slopes supports the premise that
geometry governs the conversion of kinetic energy into
infrasound. When a meteoroid enters at a steep angle (θ> 60°)
and penetrates to relatively low altitudes, it deposits substantial
energy into a narrow vertical column (see Figure 2). The shock
may initially resemble a cylindrical line-source and then
transition into a quasi-spherical expansion with abrupt fragmen-
tation, yielding a larger blast radius and stronger coupling
between energy and period. Our regression Ets under these
conditions indicate that moderate energy increases correspond to
notably longer acoustic periods. In contrast, shallow-angle entries
(θ< 30°) typically disperse energy over a longer horizontal path,
with multiple trajectory segments generating overlapping shock
fronts, especially when multifragmentation occurs. This elon-
gated geometry leads to partial wave interference and more
gradual “smearing” of higher-frequency shock components, thus
reducing the observed slope in period–energy space. Altitude
further modulates these effects: deeper bursts (<30 km altitude)
frequently behave like localized explosions, whereas higher-
altitude fragmentation often allows greater shock attenuation.

The distinction between bolides and nuclear explosions is
apparent here. Assuming a single point-source explosion for

bolides may be misleading in high-energy, shallow-entry cases
such as the Chelyabinsk superbolide (O. P. Popova et al. 2013;
C. Pilger et al. 2015; E. A. Silber 2024a, 2025). Traditional
infrasound energy–period relations based on point-source
models do not capture the complex shock geometries resulting
from multifragmentation or extended atmospheric paths.
Recent work by E. A. Silber (2025) demonstrates that shallow
angles can result in signiEcant station-to-station variability in
observed back azimuths (exceeding 10° over thousands of
kilometers) because acoustic energy emerges from multiple
points along the bolide’s trail rather than from a single point.
This multisegment emission can lead to substantial discrepan-
cies between observed and modeled back azimuths when a
unique peak brightness or point-source location is assumed
(E. A. Silber 2024a). Under favorable energetic and geometric
conditions, anisotropy in acoustic emissions may occur, as
observed in the Chelyabinsk event (C. Pilger et al. 2015).

4.5. In8uence of Bolide Physical Parameters

Dense, cohesive bolides and those with high dynamic strength
are negatively correlated with altitude (Figure 12), suggesting that
they retain structural integrity until lower altitudes. In these
conditions, energy is released into a denser atmospheric region,
creating a more localized shock that intensiEes wave amplitude
and period. Velocity shows only moderate correlations with
energy or size, suggesting that a wide range of orbital parameters
can obscure simple mass or composition effects. Most meteoroid
physical properties (e.g., strength, shape, density, and size)
control the ablation and fragmentation rates, and therefore the
energy-deposition proEle that generates the detectable infrasound
signal. Furthermore, the expansion characteristics of the ablated
vapor, particularly from the noncondensable volatile component,
inLuence the shock radius and period. This is analogous to the
Lamb wave coupling efEciency proposed by M. Boslough &
V. Titov (2024), which is suggested to be greater for explosive
volcanic events associated with volatile-rich magmas, and impact
cratering events into volatile-rich target rocks. Overall, our results
indicate that no single physical property dominantly governs the
infrasound period. Nonlinear processes during hypervelocity
entry (e.g., orientation-dependent drag, the response of internal
structure to stress, and sequential fragmentation dynamics)
contribute to the complex interplay that determines the shock
wave characteristics.

4.6. Dependency on Range

One evident pattern from both the bootstrap method and
OLS is that shorter ranges (generally �3000 km) often yield
steeper slopes (A) compared to the global average (Figure 11),
conErming that this effect is robust rather than resulting from a
few outliers. In principle, more energetic bolides produce
lower frequency infrasound components. As a result, these
more powerful events can be detected at longer ranges
(Figure 13) because low-frequency energy propagates efE-
ciently through the atmosphere without substantial dissipative
losses (L. B. Evans et al. 1972; L. C. Sutherland & H. E. Bass
2004). This selectivity means that many far-range detections in
large-area data sets often come from bolides with enough
energetic output to maintain a discernible infrasound signal
over thousands of kilometers. In far-Eeld propagation, the
initially complex shock can become effectively smoothed into
its dominant low-frequency component. Consequently, once
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predominantly low-frequency content is all that remains, the
measured periods do not vary as sharply with changes in
bolide energy as they might at closer ranges. Thus, the
observed period at long ranges can exhibit a slightly better
correlation with energy than closer stations, where a fuller
frequency spectrum is measured. While this ensures detect-
ability for major bolides, it can also mask or average out
certain mid- to high-frequency indicators of the event’s
energy, such as details linked to multiple bursts or rapid
fragmentation. Our detection-range relation Equation (6)

diverges somewhat from that of T. A. Ens et al. (2012), likely
because our larger, more diverse data set includes additional
low-energy bolides not captured in earlier work, resulting in
longer average detection ranges for modest-energy events.

4.7. Are Period-based Energy Relations Reliable?

A key outcome from our analysis is that no single global
relation fully encapsulates the entire range of bolide infrasound
behavior. While a single global line provides a convenient
baseline, caution is warranted for nearby, localized events, where
shock coupling can be stronger or more variable. Moreover, our
Endings show that while the classical slopes and intercepts from
global Ets remain practically useful, a parameter-aware approach
is warranted when angles are shallow, altitudes are low,
fragmentation is multiepisodic, or station ranges are especially
short or long. Single-value relations are effective for initial
energy estimates but may not capture extremes in geometric
conEguration or shock dynamics. ReEning these relations through
subgroup-speciEc Ets (Tables 2 and 3) can improve the accuracy
of infrasound-based energy assessment for both planetary defense
applications and scientiEc investigations. Even if little else is
known about a bolide beyond its infrasound record, our results
show that period measurements alone can still yield a reasonable
Erst approximation of total energy, and, if multistation records are
available, geolocation. Whenever a station network detects
sufEciently strong infrasound signals, regardless of uncertainties

about Light path or fragmentation mode, one can employ
established period–energy formulas to gauge yield. The effective
propagation of low-frequency infrasound over large distances
renders it a primary method for rapid bolide characterization,
especially when optical or radar observations are lacking.
Furthermore, reEning energy estimates through data partitioning
(e.g., by distance or inferred multifragmentation) advances risk
assessment when supplementary information on the object’s
physical attributes are unavailable.

4.8. Broader Implications for Planetary Defense

Our results have direct implications for planetary defense,
where accurate bolide energy estimates are crucial for
assessing potential risks from near-Earth asteroids (NEAs).
Robust correlations among diameter, density, and dynamic
strength with total energy reveal that larger, more cohesive
bolides tend to penetrate deeper, resulting in lower-altitude
breakups that increase the potential for surface damage and
have distinct infrasound signatures. These observations sup-
port the use of period measurements as a reliable, rapidly
obtained parameter for energy estimates, even though
secondary factors (e.g., entry angle and altitude) modulate
the shock’s behavior. Clarifying how multifragmentation
(LC class 2) intensiEes the period–energy link through over-
lapping quasi-spherical expansions reinforces the need to
account for fragmentation in yield predictions, particularly for
low-altitude, multiburst events. Recognizing that no single
factor dominates the infrasound signal emphasizes the
importance of multiparameter models that incorporate density,
dynamic strength, angle, and altitude. The correlations derived
here provide a framework for planetary defense agencies to
assess potential hazards from incoming NEAs by linking
fundamental shock physics to practical infrasound diagnostics.
Future work may beneEt from advanced models, including

Bayesian hierarchical frameworks and high-Edelity wave-
propagation codes, to address complexities such as multi-
episode fragmentation and shallow-angle entries. Nonetheless,
our bootstrap and partition methodology form a practical basis
that bridges classical period–energy formulas with the
complexity of real bolide observations, meeting the needs of
both planetary defense and meteor physics research.

5. Conclusions

We have conducted a comprehensive investigation into
empirical period–energy relations for bolides. We compiled
consolidated tables of previously published period- and ampl-
itude-based energy relations, correcting minor unit inconsisten-
cies or typographical issues that have persisted in the literature.
By incorporating an expanded bolide database that includes USG
light curve and atmospheric Doppler-wind proEle data, and by
applying both classical OLS Ets and a bootstrap framework that
partitions data by various parameters (e.g., altitude, source-to-
station distance, entry angle, bolide mass, and light curve
classiEcation), we have moved beyond the limitations of a single,
global relation. This methodology provides a more comprehen-
sive, physics-consistent means of reEning yield estimates than
relying on any single, universal formula.
Our reEned period–energy Ets demonstrate that while global

or averaged Ets are acceptable baselines for distant or
minimally constrained events, signiEcant variability appears
in cases of low altitude, close stations, or shallow trajectories.

Figure 14. Detection range (km) vs. total impact energy (kt) for all infrasound
stations that recorded a positive signal. The red line represents the upper-range
envelope (yellow-black circles) derived in this study, while the black line
shows the relation from T. A. Ens et al. (2012), ( ) ( )= +R Elog 0.33 log 3.79.
Each blue circle corresponds to a unique detection, illustrating how measured
ranges vary with event yield; the superposed curves provide a simple upper
bound on the distances over which infrasound from bolides of given energies
can be detected.
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Under these conditions, the measured infrasound period becomes
much more sensitive to energy, explaining why a single universal
relation may under- or over-estimate yields for speciEc
geometries. By systematically isolating factors such as peak-
brightness altitude, fragmentation type, and station distance, our
study reveals the origins of deviations from classical period–
energy lines. This partitioned, bootstrap-driven approach, rarely
applied so extensively in bolide research, offers a transparent,
data-driven method for quantifying uncertainties and testing
physical assumptions in shock formation.

From a planetary defense hazard-assessment perspective,
our framework allows for adaptable yield estimations tailored
to bolide geometry and fragmentation type. Although an
averaged global Et remains suitable for Erst-order estimates,
subgroup partitions become crucial for shallow entries, low
altitudes, or multiple fragmentation episodes where period–
energy scaling signiEcantly deviates from a single baseline.
Our Endings conErm that period measurements alone can
provide a practical Erst approximation of bolide energy, even
without additional observational constraints, and that multi-
station records enable geolocation. The demonstrated effec-
tiveness of infrasound detection in characterizing large,
potentially hazardous bolides across vast distances emphasizes
its immense value for planetary defense.
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Appendix A

A.1. Empirical Amplitude-range Yield Relations

In this section, we provide a table with empirical amplitude-
range yield relations (Table A1). These relations are in the

Table A1
List of Amplitude-range Relations

A B C A
*

[Pa] R
*

Source

1.00 0.50 −1.54 A
max R sin Δ A. D. Pierce & J. W. Posey (1971)

2.00 2.94 −1.84 A
max Δ D. Clauter & R. Blandford (1998)

1.47 2.00 −4.96 A
max R R. W. Whitaker (1995)

3.03 3.03 −9.09 A
max R Russian-crosswind, J. Stevens et al. (2002)

3.03 3.03 −10.00 A
max R Russian-downwind, J. Stevens et al. (2002)

2.00 3.52 −10.62 A
max R E. Blanc et al. (1997)

1.49 2.00 −4.18 Aw R J. P. Mutschlecner & R. W. Whitaker (2009)

1.55 2.00 −8.45 Aw R M. Davidson & R. W. Whitaker (1992)

Note. Range (R*) is listed in km or degrees, while A* refers to either maximum amplitude (Amax) or wind-corrected amplitude (Aw) in Pa. J. Stevens et al. (2002)

included all arrivals, including thermospheric.
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following form:

( ) ( ) ( )= + +* *E A A B R Clog log log ,

where E is energy in kilotons (or tons) of TNT equivalent, P is

infrasound signal period in seconds, and A, B, and C are the

regression coefEcients, *A is the maximum amplitude (Amax) or

wind-corrected maximum amplitude (Aw) in Pa, and R* is the

range from the source to receiver in either km (R) or degrees

(Δ). The amplitude correction, derived by R. W. Whitaker

(1995), is:

=A A10 .w
v0.019

max

A.2 Amplitude-range (Wind Corrected) Relations

There is a family of amplitude-range relations that incorporate
an empirical correction constant (k) accounting for the average
wind velocity (vW ) (in m s−1) along the great-circle path from
source to receiver (Tables A2 and A3). In these expressions, the
signal amplitude ( *A ) is given either as maximum amplitude
(Amax) or peak-to-peak amplitude (AP P2 ) in Pa:

( ) ( ) ( )= + +*A a b R E kvlog log c log .W

Here, a, b, and c are the regression coefEcients, range (R) is
in km, and the constant k is expressed in units of (s/m). Half-
yield amplitude-range relations are of the following form,
where the coefEcient c is replaced by 0.5:

( ) ( ) ( )= + +*A a b R E kvlog log 0.5 log .W

Table A2
List of Amplitude-range Relations that use Wind Correction

Type A* [Pa] a b c k [s/m] Units Source

<3.5 kt A
max 4.06 −0.99 −0.43 −0.0084 t T. A. Ens et al. (2012)

<3.5 kt AP P2 4.33 −1.00 −0.43 −0.0084 t T. A. Ens et al. (2012)

>7 kt A
max 10.75 −1.15 0.78 0.0014 t T. A. Ens et al. (2012)

>7 kt AP P2 11.35 −1.20 0.77 0.0013 t T. A. Ens et al. (2012)

all E, all R A
max 4.38 −1.06 −0.47 −0.0068 t T. A. Ens et al. (2012)

all E, all R AP P2 4.71 −1.08 −0.46 −0.0068 t T. A. Ens et al. (2012)

<3000 km A
max 4.97 −1.18 −0.45 −0.0086 t T. A. Ens et al. (2012)

<3000 km AP P2 5.30 −1.2 −0.45 −0.0084 t T. A. Ens et al. (2012)

<3.5 kt A
max 3.21 −1.75 … −0.0174 kt W. N. Edwards (2007)

<3.5 kt AP P2 3.36 −1.74 … −0.0177 kt W. N. Edwards (2007)

>7 kt A
max 2.18 −1.26 … −0.0024 kt W. N. Edwards (2007)

>7 kt AP P2 2.58 −1.35 … −0.0018 kt W. N. Edwards (2007)

all A
max … … −0.46 … kt J. P. Mutschlecner et al. (1999)

all A
max … −1.28 −0.43 … kt J. W. Reed (1972)

Note. Range (R) is listed in km, while A* refers to either maximum amplitude (Amax) or peak-to-peak amplitude (AP P2 ) in Pa. T. A. Ens et al. (2012) and

W. N. Edwards (2007) derived their expressions from bolide observations. J. P. Mutschlecner et al. (1999) worked with nuclear-test data and J. W. Reed (1972) used

high-yield explosive tests. Some relations are expressed in tons (t), whereas others are in kilotons (kt), as indicated in the “Units” column.

Table A3
List of Half-Yield Amplitude-range Relations that use Wind Correction

Type Amplitude [Pa] a b K [s/m] Units Source

<3.5 kt A
max 3.55 −0.92 −0.0083 t T. A. Ens et al. (2012)

<3.5 kt AP P2 3.79 −0.93 −0.0082 t T. A. Ens et al. (2012)

>7 kt A
max 5.79 −1.39 −0.0006 t T. A. Ens et al. (2012)

>7 kt AP P2 6.24 −1.44 −0.0008 t T. A. Ens et al. (2012)

all E, all R A
max 4.04 −1.01 −0.0068 t T. A. Ens et al. (2012)

all E, all R AP P2 4.28 −1.02 −0.0068 t T. A. Ens et al. (2012)

<3000 km A
max 4.44 −1.10 −0.0086 t T. A. Ens et al. (2012)

<3000 km AP P2 4.68 −1.11 −0.0084 t T. A. Ens et al. (2012)

<3.5 kt A
max 3.21 −1.75 −0.0174 kt W. N. Edwards (2007)

<3.5 kt AP P2 3.36 −1.74 −0.0177 kt W. N. Edwards (2007)

>7 kt A
max 2.18 −1.26 −0.0024 kt W. N. Edwards (2007)

>7 kt AP P2 2.58 −1.35 −0.0018 kt W. N. Edwards (2007)

Note. Range (R) is listed in km, while amplitude refers to either maximum amplitude (Amax) or peak-to-peak amplitude (AP P2 ) in Pa. Some relations are expressed in

tons (t), whereas others are in kilotons (kt), as indicated in the “Units” column.
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Appendix B

The infrasound signal periods used in this study were

compiled from published data sources (E. A. Silber et al. 2011;

T. A. Ens et al. 2012; N. Gi & P. Brown 2017; T. Ott et al.

2019; C. Pilger et al. 2020; T. Ott et al. 2021; P. Hupe et al.

2024; E. Silber et al. 2024). The detailed procedures for

measuring infrasound periods are described in T. A. Ens et al.

(2012) and E. A. Silber (2024a). In essence, these methods

identify the main segment of the waveform corresponding to

the peak amplitude, and then measure successive zero

crossings (ZCs) to derive one or more fundamental periods.

The dominant period is then computed from these zero-
crossing intervals, often cross validated by a spectral analysis
to conErm the peak frequency (see E. A. Silber 2024a). An
illustrative example of this measurement process is shown in
Figure B1, demonstrating how the maximum and minimum
amplitudes are located, followed by consecutive ZCs that yield
the signal period. Readers interested in a comprehensive
discussion of the signal processing steps, potential sources of
uncertainty, and station-to-station variability are referred to the
above references. Because the measurements used in this work
were taken directly from the literature, we do not replicate the
entire procedure here.

Figure B1. Schematic representation of the procedure for measuring infrasound signal parameters and quantifying the signal period. Each ZC is marked where the
waveform crosses the zero-pressure line. In this example, ZCs labeled as ZC1, ZC2, ZC3, and ZC4 deEne the segments used to calculate the period. Notably, based
on the analyst’s judgment and the appearance of the waveform, ZC1 may be selected either before the maximum amplitude or at its onset. The green and gray sets of
ZCs illustrate these possible scenarios. This Lexibility in choosing ZC1 ensures that the extracted period accurately reLects the characteristics of the shock signal and
accommodates variations in waveform morphology. Full-cycle ZCs deEne discrete periods. Averaging these discrete periods yields the mean signal period, and the
standard deviation provides an uncertainty estimate. The maximum and minimum amplitudes (±A) are labeled, and the peak-to-peak amplitude is computed as (+A)

+|−A|. This method enables consistency when extracting signal parameters such as amplitude, period, and their statistical variability.
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