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1 Astrophysical Measurements

1.1 Important Scales and Constants

Astronomers typically deal in the cgs (centimeter-gram-second) system of units, rather
than the mks (meter-kilogram-second) system you may be used to. As such, lengths will be
measured in centimeters (cm), and masses in grams (g). Other derived units exist, too, such as
the dyne, which is the unit of force equalto gcm/s® and the erg, which is a unit of energy, equal

to gcm?/s®. In the following tables, many length scales, timescales, and other fundamental

units are presented that you should familiarize yourself with.

Length (cm) Comments

107% Planck Length

0% Proton (nucleus) size

1078 Atomic radius

10~ “Large” molecules

10° Common experience (1 cm)
10° Largest known living things
10° Asteroid; neutron star

10° Planet

10" Star (sun)

10" Red giant

10" Solar System

10 1 light year (ly)

10%# Globular cluster (bound stars)
10% Galaxies

10% Cluster of Galaxies (Virgo)
10% Size of Universe

The radius of the universe is about 10%* Planck lengths in width, or about 10*
proton widths across. The latter is more relevant to our purposes since we can typically only
probe on proton length scales. Nearly all lenghscales between 107 to 10™ cm are largely

Table

1: Relevant length scales in astrophysics.

unexplored. We have only looked at 107 of the universe!




Constant

Values
Symbol

Reduced Planck Constant

h 1.05x107*" ergs

Gravitational Constant

G 6.67x10°® cm®/g/s?

Speed of Light

c 3.00x10™ cm/s

Table 2: Fundamental unitsin cgs.

Finally, we come to some important time scales, shown in Table 3

Time (s) Comments
10 i hG
Planck Time (C—Sj
107 Period of highest energy cosmic ray
10°% Period of typical nuclear gamma ray
107 Typical electron orbital period
10°° H spin flip transition photon period
10°° Audio
10° Common time perception
10° Bacteria, virus lifetimes
10%1% Large mammals
10" Largest star lifetimes
10t 18 Age of universe

Table 3:Important time scales in astrophysics.

In Planck units, the age of the univers is about 10°t,_, .

1.2 Units of Length and Angle

Due to the large distances encountered in space, astronomers will often use the unit of
the light year, which, unsurprsingly, is the distance traveled by light in one year. If you ever run
in to someone thinking that a “light year” is a unit of time, you should smack them. Hard. A light

year in cm can be calculated pretty easily:

1ly = ¢(1 year) = (3.00x10"°cm/s)(z x10"s ) ~ 9.46 x10""cm = 9.46 x10** km

(Pro tip: the approximation of a year being approximately 7 x10"s is actually not too bad,
and it’s very easy to remember). As an order of magnitude estimate, the total distance all cars

have ever driven is approximately 10 light years.

Even more common than the light year is the parsec. A parsec is defined as the distance
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from the sun you would have to be in order for the angular distance between the earth and the
sun to be arsecond. This somewhat strange choice of measurement was made so that an object

at a distance of 1 parsec has a parallax angle of one arsecond (hence the name “par”-“sec”).
Figure 1 shows schematically how the parsec is defined.

Harth

=1" Sun

d=1 pc r=1AU

Figure 1:Schematic drawing showing how the parsec is defined.

Finally we should mention the astronomical unit (AU), which is the average distance
between the earth and the sun. It is very useful when speaking of distances within the solar

system. In centimeters, it is approximately 1 AU =1.496x10"cm
In observational astrophysics, we often denote the “size” of an object by its angular

width in the sky. As we should all know, there are 360° in one circle. However, the degree is
often too large of a unit of angle for our purposes. Recall how degrees, arcminutes, arseconds,
and radians are all related:

1 =60 (1.2)

1 =60" (1.3)

1radian = 180 ~57.3° = 206, 280" (1.4)
T

Using some simple trigonometry, we can use the definition of a parsec to determine its length
in light years. We may use the small angle approximation to say that tané&~sinéd=~4@
(remember, the angle must be in radians!). Then the tangent of the angle subtended by the solar
system at a distance of one parsec is

1AU

sin1"=2AY  1pc= —— = __=206,280AU ~3.26 ly (1.5)
1pc 206,280

Distance ‘ Comments ‘




1.3 pc Closest Star (« Centauri)
0.3 light seconds Earth to Moon

0.3 light minutes Earth to Sun

0.5 light hours Pluto

4.2 ly Closest Star

2.5x10* ly To Galactic Center

10° ly Galactic Diameter

2x10°% ly Andromeda (M31)

10 ly Most distant observed galaxy
2x10" ly Size of Universe

Table 4: Large distance scales in astrophysics. The last two depend on distance indicators,
which is a major problem in observational astronomy.

1.3 Diffraction and Angular Resolution

All telescopes, to some extent, are just a hole through which light must pass and be
collected. Passing through any hole, light is diffracted into a bessel function pattern. This will
pose a fundamental limit on how resolved any image from a given telescope will be.

The degree to which a photon is diffracted depends on its wavelength. For visual
perception, optical wavelengths are most used, with violet photons having a wavelength of

around A =4000A=400nm=0.4um and red photons having wavelengths around

A =7000 A =700 nm =0.7um. The cones in your eyes respond more to color, but depend on
having bright light, whereas the rods behave well in low light, but do not detect colors. Thus,
galaxies and nebulae (low-light objects) typically will appear as black and white objects to human
eyes, even when viewed through a telescope. Note, though, that rods sensitivity peaks more
towards the blue, and less (almost to zero) towards the red. The cones, however, are somewhat
reversed. Thus, objects in bright light will have inverted apparent brightness to your eyes when
the intrinsic brightness is reduced. In addition, your retina is deficient in rods, so your low-light
sensitivity is actually off-center (i.e., looking slightly away from an object makes it appear
brighter). Figure 2 shows the relative responses of the rods and cones to light of various optical
wavelengths.
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Figure 2: Response of Rods and Cones in your eye to various wavelengths of light. The dotted
line is the response of the rods (colorless). The three other show the response of each of the
different types of cones. The net result is that they peak closer to the red than the rods. Note

how the rods detect almost no red light.

Aside from these limitations of your eyes, they are significantly diffraction limited.
For example, our eyes can resolve a planet, but stars are so small (in angular size), that we can’t
resolve their shape (we’ll later see that even with perfect eyes, this would be quite difficult with
the atmosphere). The limiting resolution of any aperture is given approximately by
A

o, ~— 1.6
bL ¥ (1.6)
For the case of blue light in your eye, we find
_4
05x10 cm ~107 radians ~ 0.3’ (1.7)

DL ~ 05 cm
So the full angle that you can resolve is 26,, =0.6". In truth, the correct diffraction-limited
angle for a circular apertureis 6,, =1.224/d . Also worthy of note is that in low light, your iris

opens more, increasing aperture, causing a higher resolution for your eyes. Thus, sunglasses can
actually improve resolution (though they will saturate some of the light).

As an example of the use of this, let’s investigate how small of a distance your eyes can
resolve at a distance of 100 meters:

. d d
sin26,, =—=
P L 10%*cm

So at a distance of 100 m, your eye can theoretically resolve details on the order of 2 cm! In a

d = (10%cm)sin 0.6’ ~ 2 cm (1.8)
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more astrophysical context, the sun and moon both subtend an angle of about 30’, so we can
easily resolve them. A set of telescopes and their angular resolutions is shown in Table 5.

Diameter of Mirror 1.224/d
inches 2”
inches 17

2.4 m (HST - Hubble) 0.008”

m (Palomar) 0.004”
m (TMT UC-CalTech) 0.002”

Table 5: Diffraction limited angles of various telescope sizes.

However, atmospheric fluctuations limit all resloutions to around 1”, regardless of
the aperture size. To minimize atmospheric interference, telescopes are built on high dry
mountans (like Mauna Kea in Hawaii) or in Antarctica (South Pole). Alternatively, NASA has
launched the Hubble Space Telescope (around 1989-1990). By observing from space, the
atmospheric effects are removed, yielding an angular resolution of less than 0.1” (aound 10 times
better than previous ground-based efforts). Additionally, going to space eliminates weather and
city light issues.

These considerations go past standard optical astronomy. To study radio astronomy, for
example, astronomers use very long baseline interferometry (VLBI) to get data. Since the
wavelengths are so long, the angular resolution is very low unless the aperture (baseline) is very
high. For instance, two radio telescopes can be located on either side of earth, making the
baseline be the diameter of earth. Then for a typical radio signalat A ~ 6 cm, we get an angular

resolution of
A

Oy ~ D ~5x10°rad ~ 0.001" (1.9)

This is about 1000 times better resolution that typical ground-based optical telescopes, making

radio telescopes very useful for precision astronomy. We can also get better resolution by

observing at higher frequency (like X-ray astronomy), by putting a telescope on the moon or one

in orbit, etc. (Check out the RadioAstron project for a really extreme use of VLBI. Our own Carl
Gwinn and Michael Johnson are working on this project!)

1.4 Magnitudes and Flux

Objects are characterized (ranked) in “brightness” by their magnitude. Historically, stars
were ranked from 1 to 6 with 1 being the brightest and 6 being the dimmest (you can already see
a problem that a higher number means a dimmer star). Instead of changing this system, modern
astronomy has simply slapped a mathematical underpinning to the magnitude scale. We do so
by requiring that a difference in five magnitudes corresponds to a star having a flux that is
precisely 100 times greater. Mathematically, we compare the magnitudes to the fluxes thusly:

2
k% =100 " = (107) ™ ™ =105 ™ =107 (1.10)
2



Here b, isthe flux of object 1 and b, is the flux of object 2, whereas m, and m, are their

magnitudes. Note that we have only defined magnitudes as a relative scale. We must pick a zero
point for which to base it on. Also note that since a difference in 5 magnitudes necessitates a flux
ratio of 100, a difference in magnitude of 2.5 must require a flux ratio of 10.

As a more concrete example, suppose we are given two stars with known magnitudes
of m =142 and m, =23.7 and we are asked to compute the ratio of their fluxes. We may

jump immediately to (1.10):
E — 100.4(23.7—14.2) — 100.4(9.5) ~6.3x10° (1.11)
b2
So object 1 is about 6.3x10° times brighter than object 2 (on a linear, flux-based scale, at
least).

So far we’ve been careful to be vague about what we mean by flux. Depending on the
situation, we might mean flux in terms of photons/cm?/s or ergs/cm?®/s or any other sensible
choice of units. While using actual units of energy per unit area per unit time is more physically
motivated, the photon count scheme is often more practical since telescopes essentially count
photons rather than energy (although look into MKIDs to find out how Ben Mazin’s lab is working
on energy sensitive detectors).

Since the choice of magnitude scale is arbitrary up to a choice in zero point, there can
also be negative magnitude stars (brighter than your zero point star, then). For instance, the sun
is @ magnitude —27 star and the moon is at —12 magnitude. Performing a calculation on
these magnitudes similar to the one done above, we find the ratio in the fluxes between the
moon and the sun to be 10°! The fluxes for these two objects are b  =10° W/m* and

b

have implicitly chosen a particular magnitude system).
Telescopes typically measure flux, so the astronomer is more interested in converting
fluxes to magnitudes rather than the other way around. Inverting (1.10) gives us

oo ~10~° W/m? . (Note that once we declared what magnitude the sun and moon are at, we

%: 10%4M2 ™) (1.12)
2
Iog% =0.4(m,—m,) (1.13)
2
m,—-m, = 2.5Iog% (1.14)

2
Where, unless otherwise stated, it is always assumed that log = Ioglo.

The magnitude scale so far has described what is called the apparent magnitude, which
measures how much light we receive here at earth. This does not tells us the intrinsic brightness
of the object (related to the luminosity). The varying distances between earth and objects cause
the apparent magnitude to vary significantly from its absolute magnitude, which is defined to be
the apparent magnitude that would be measured if the object were located at 10 pc from earth.
To differentiate between these two magnitudes, we use a lower case m to denote apparent
magnitude, and a capital M to denote absolute magnitude. You could compute a magnitude
(apparent or absolute) for any object, be it a star, galaxy, beachball, or a flashlight.
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We've already mentioned that the brightness of an object decreases with increasing
distance. This is due to the inverse square law. That is, flux scales as

1
F o = (1.15)
With this in mind, we can directly relate apparent and absolute magnitude. Suppose m and
b are the apparent magnitude and observed flux of the object at its true distance from earth,
but M and B are the absolute magnitude and observed flux if the object were moved to 10
pc from the earth. We can just treat the “10 pc star” as another star and use our old formula to

find the relationship between m and M:
by

b
m,-m, =25log= = M-m=25log— (1.16)
b, B
However, we know the how the ratio of fluxes varies with distance, the inverse square law.

Plugging this in to (1.16) gives us

10pc Y’ 10 pc
M—m:2.5log(Tp] :5Iong:5Ioglo—5logd:5—5Iogd (1.17)

Where the last two forms of (1.17) can only be used if the distance d is in parsecs. Often you
will see the difference between the apparent and absolute magnitudes denoted via
H=m-—M. (1.18)
This quantity is called the distance modulus because it uniquely defines the distance to an
object, though in and of itself, it tells you nothing about the luminosity of the object. The distance
modulus comes in handy especially when dealing with objects of known absolute magnitude (so-
called standard candles, like Type la supernovae). We measure an apparent magnitude and from
that deduce a distance modulus, and thus a distance from the measurement.
As an example, suppose a galaxy at 10 megaparsecs (Mpc) has an apparent magnitude
of 17. What is its absolute magnitude?
First we write out the distance in parsecs to make this computationally simple:

d =10 Mpc =10 pc (1.19)
Now we just have a straightforward application of (1.17):
M =m+5-5logd =17+5-5log10’ = 22-35=-13 (1.20)

Note, though, that a galaxy is about 10* pc in size, so at 10 pg, it is not small. We treat it as
though all of its light were from a small point source in making these calculations.

1.5 Photons

From gquantum mechanics, we know that radiation energy is quantized into units called
photons. At a frequency v or wavelength A, each photon has energy
E=hv=hc/ A (1.21)
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where we’ve used the fact that
c=vA (1.22)
for radiation. Here h is the Planck constant (h~6.63x107 ergs). If we want to get a fast
relation between the wavelength of a photon in angstroms and its energy, we get

E= %xlo8 erg (1.23)
or in electron volts,
E= %xlo4 eV (1.24)

(An electron volt, or eV, is the amount of energy gained by an electron in passsing through a
potential of one volt and has a value of 1eV =1.602x107" erg.) For example, your eye has a

peak response at a wavelength of A =5500A, which corresponds to an energy of
1.99

E= x107® erg = 3.62x10 ™ er 1.25
5500 g g (1.25)
or, again in electron volts,
1.24 4
E= x10" eV =2.26 eV (1.26)
5500

So far, our discussion of the magnitude system has been restricted to bolometric magnitudes.
That is, the magnitude that corresponds to the total flux (integrated over all wavelengths)
emanating from the object in question. If we define a bolometric magnitude at a particular flux,
we have effectively set the entire magnitude scale. We define fora m=0 star, the specific flux
to be

F,(m=0)=3.7x10"ergcm? s A™ (1.27)
at the top of the atmosphere at 4 =5,500A . Note how this flux is defined as a “per

wavelength” flux. That is, to get the total flux incident between two wavelengths, you’d have to
perform an integral:

F,= jfad,l. (1.28)

To get “color” information on objects, astronomers use various filter systems. These filters only
allow light to pass through a specified narrow band of wavelengths. A classic system is the
Johnson system of UBV (U ='Ultraviolet’, B ='Blue’, V ='Visible’) filters. The V -band filter

has a bandwidth close to that of your eye, at 4,000A —7,000 A. Note that the center of this

range is right at the magic number fora m=0 star, 5500 A. Then the total flux passing through
a V filterduetoa m=0 star would need to be

R, (m=0)=F,(m=0)A1=3.7x10" ergcm? s A*(3,000A) ~1x10~° erg cm* s™*

(1.29)
If we assume that the average photon passing through the filter indeed has a wavelength of

Aavg = 5,500 A, then we may determine the photon flux (number of photons passing through a

unit of area per unit time). Each photon has an energy of E =hc/ A ~3.6x107" erg, so then we
may convert energy units to photons directly:

11



F(m=0)=1x10"ergcm™>s™"x

1.6 Eyes and Telescopes

1photon
3.6x107% erg

~3x10° photonscm™@s™  (1.30)

In ideal conditions, the eye has a maximum diameter of 0.5—0.7cm and thus an area of
about 0.4 cm?. Comapre this to the telescope at Palomar, which has a diameter of 5 meters and

thus an area of about 2x10° cm?, which is about 400,000 times bigger than your eye! Table 6
compares the relative detection capabilities of the human eye versus that of Mount Palomar. The
takeaway here is that telescopes vastly outperform the eye in terms of photon collection, and
thus detection of faint objects.

Magnitude Flux Eye Palomar (photons/s)
(photonscm™@s™)  |(photons/s)

0 3x10° 10° 610"

5 3x10* 10* 6x10°

10 300 100 6x10’

15 3 1 6x10°

20 0.03 107 6x10°

25 3x10™ 10 60

30 3x10° 10° 0.6

Table 6: Photon detection for the human eye and for the telescope at Mount Palomar. The
eye’s absolute detection limit is at around 8th magnitude, whereas Palomar’s limit is around

25th magnitude.

2 Signal to Noise

Of great importance in Astronomy is the Signal to Noise Ratio or SNR, for short. This is
the raio of incident flux that is due to the object being observed and the random flux from other
sources that acts to corrupt the image. For obvious reasons, it is desirable to maximize the SNR.
Since this discussion is pertinent to images taken with CCDs (Charged Coupled Devices), where
photons are converted to electrons, signals are typically measured in electrons. See Table 7 for
the definitions of some relevant variables.

Quantity (units)

Readout Noise (e7)

Dark Current (e /s)

12



Quantum efficiency (dimensionless)

Point Source Signal Flux on Telescope (photon s*cm™)

Background Flux from Sky (photons s ‘cm™ arcsec™?)

Pixel Size (arcsec) (assuming greater than seeing)
Telescope Efficiency (dimensionless)

Integration Time (s)

Telescope Area (cm?)

>N %0 mO

Table 7:Variables relevant to SNR.

Using these variables, the signal can be decuced to be

S =FrAsQ, (2.1)
Physically, we are starting with the total integrated energy deposition per unit area (flux
integrated over integration time), then we find the total energy deposited by multiplying this
energy per area by the area of the telescope. However, not all the photons will make it through
the telescope, so this total energy deposition is attenuated by a factor of &, the telescope
efficiency. Finally, not every photon is converted to an electron, so this number is attenuated by

the quantum efficiency of the chip (or your eye, for that matter), and is thus multiplied by Q,.

2.1 Sources of Noise

The calculation of the source signal is relatively straightforward (assuming you have all of
the relevant information on the object being observed and your observing setup). However, the
task of calculating the noise is a different matter.

There are three main sources of noise that we will consider here: dark current, readout
noise, and background noise. Two of these, dark current and background noise, increase with
integration time, whereas readout noise is independent of the exposure (integration) time.

All of these sources of noise are assumed to be uncorrelated (one does not affect the
other), and since they are Poisson distributed, the standard deviation (which will end up being
the “noise”) of each quantity is equal to the square root of the quantity. That is,

o, =N; = \/ST. (2.2)

2.1.1 Dark Current
CCDs work by having valence electrons be excited by incident photons into the conduction

band and then being trapped there. This process happens in every pixel, and so at the end of the
exposure, the electrons are “read out” onto a computer, say, and counted. However, photons
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are not the only source of excitation in these devices. Thermal fluctuations can also bump
electrons into the conduction band. This is obviously a temperature-sensitive phenomenon, so
most good telescopes use advanced cooling systems to cut down on dark current.

The rate at which these excitations occur is the dark current, i, . Thus, the signal

generated by dark current is given by
Spe =lpe? (2.3)
This signal is stochastic, so it is distributed randomly around the image. We cannot, then,
completely correct for it. However, astronomers can somewhat mitigate this issue by taking a
dark frame image. A dark frame is an image that is taken with the same exposure time as the
“real” image, but with the shutter closed. In this way, the dark frame can be subtracted from the
“real” image to remove a large chunk of the dark current noise. Obviously the dark frame doesn’t
completely recreate the noise, since the distribution is random, but it is better than nothing. We
are left with only the fluctuations in the average dark current signal, which is the stanadrd
deviation of the signal.

III

2.1.2 Background Noise

In between objects, the sky is not completely dark. City lights, the moon, starlight, and
other sources of light pollution are scattered in the atmosphere and eventually create a diffuse
background of light in the sky. This light is also captured by the telescope, but it is not wanted.
Given the variables mentioned in Table 7, we can calculate the background signal to be about

S, = FAeQQr (2.4)

The reasoning behind this equation is almost exactly the same as for (2.1), just with the addition
of QQ to make FﬁQ be the effective flux. Again, astronomers can subtract off the average

background signal, but still be left with some noise due to the random distribution of the noise.
2.1.3 Readout Noise

When CCDs read out their images, not all of the electrons can be effectively removed.
Some “electron sludge” is left over and is then recorded in the next image. These orphaned
electrons are treated in the following images as if they were bona fide detections, causing some
readout noise. There are also other random effects (themal excitations in between images, for
example). This can be partially corrected by subtracting off a bias frame. This is an image that is
taken with effectively zero exposure time, the electron sludge and other effects can be removed.
This, like the dark frame, is subtracted off of the “real image”, leaving only the variation in
readout noise, N . Note that bias frames are often used to correct dark frames to make them

true measurements of the thermal noise.
2.2 Computing the SNR

We can divide the sources of noise into the time-dependent signals, S and the time-

time

independent readout noise, N . The time-dependent unwanted signals directly add to give

14



Stime =S +Spc +S, (2.5)

The uncertainties in these signal sources are just the square roots of the signals themselves,

giving
Ng=vS  Npc=ySpc  N,=.5, (2.6)

Note that we’ve included a standard deviation in the source’s output, since it is also stochastic.
The combined action of these three noise sources can be determined by adding them in
guadrature (since they are uncorrelated):

N, = \/st +Nge +N? = \/s +Spe +S, = \/Fz'Ang +ipeT + F,AQ,Qr (2.7)

For the total noise, we must also consider the readout noise, which is independent of time, so
we add this to the time-dependent noise in quadrature:

N = N2+ NZ, = (N2 +2(ine +F,A2Q,Q)) (2.8)

A =AsQ

&

time

Now let us denote
(2.9)

e
as the “effective area” and
N, =FA +iy. + F,AQ (2.10)
as the time-dependent noise per unit time. Now we can express the signal-to-noise ratio
somewhat compactly as

S _ FANT _ FANT  _ FAr

(2.11)

N 5 172 5 V2 2 2"
|:NR+ FAg+iDC+FﬂASQ} |:NR+ NT} [NR+TNT]
T T

From this expression, we can see that there are two distinct regimes for noise domination. For
short exposures (small 7z ), the noise is dominated by the readout noise, but as the exposure
time is increased, the time-dependent noise factor begins to dominate. The transition time
between the two regimes occurs at

N2 N2
T, = R =R (2.12)
FA +ipc +F,AQ N,
as you might expect. At this critical exposure time, the SNR is
FA N FAN
SIN(r=1¢,)= £ R =——=R (2.13)

V2(FA +ipc +F,AQ) V2N,
We can also use this expression to find the time required to measure a desired S/N (note that
as time goes up, S/N must increase due to the \/; dependencein S/N).

Sy=SIN=FAz/[N2+eN, " (2.14)
SZ(NZ+7N;) = F?A’r? (2.15)
0= F2A%? ~$2N, 7~ S2N? (2.16)
SIN, +./S*N2+ FZA’S2N?
T:NT\/NTZZ : ON VR (2.17)
2F A
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2.3 Examples and Applications

Suppose that you are observinga m =20 object in an atmosphere with 2” seeing with
a CCD with the following specs:
N, =12
ipc =1e s pixel™ at35°C
Q,=0.3
A=10°
=05
F, =107 photons s™ cm™ arcsec™ (ideal sky)
Q = 4 arcsec’
F =0.03 photonss™ cm™ (20th magnitude)

Assuming all of this, the SNR would be calculated according to (2.11) to be, as a function of the
integration time,

144 Ve
S/N :4.5\/?/{—+4 5+1+6} (2.19)
T

Now, the sky is rarely ideal, so if we assume that F,=0.1 (i.e, ten times the ideal sky

background flux), we get instead

1/2
SIN= 45[/{—+4 5+1+60} (2.20)
T
Table 8 shows some SNRs for various integration times in these two settings.
Integration Time (sec) SNR (F, = 107%) SNR (F,=0.1)
1 0.4 0.3
10 2.8 1.6
100 13 5.5
1000 42 18

Table 8: SNRs for the setup described at different background fluxes.
If instead, we had a CCD with Q, =0.5 and N =10 (all other things the same),

we should find

1/2
S/N= 75[/[—+7 5+1+1o} F, =107 (2.21)
T
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lOO 1/2
S/N= 7.5%/{—+7.5+1+100} F.=0.1 (2.22)
T

The corresponding SNRs are found in Table 9.

Integration Time (sec) SNR(F, = 107%) SNR (F, =0.1)
1 0.7 0.5
10 4.4 2.1
100 17 6.9

Table 9: SNRs for the same setup with a better CCD.

Note, though, that simply cranking up the integration time is not always an option.
A CCD is limited in how many electrons it can store in each pixel during a given exposure before
bleeding and ghosting effects start to affect the image quality. Astronomers can get around this
by “stacking” multiple exposures on top of each other, effectively increasing the exposure time.

3 Photometry

3.1 Aperture Photometry

In aperture astronomy, concentric circular apertures are used to compute the sky-
subtracted flux of a star. The inner circle is made large enough to cover almost all of the flux from
the star and the outer one is large enough to obtain a good sky value but not too large. We
assume the image to be analyzed is already flat fielded, though for some applications, this is not
critical.

In general, we want to sum up the contributions of all the pixels where significant light
from the star occurs. Since there are other sources of signal, such as CCD dark current,
atmospheric emission, etc., we must subtract these so that the result we get is only due to the
star. We call this corrected value the sky subtracted value.

Heuristically, we let g(1) represent the pixel value in A/D units from all sources (star,
background, dark current, etc.), and g,(1) represent the pixel value in A/D units of that same
image if no star were present. This is the background value and is assumed to have the same
integration time. We have also written down these quantities in a way that suggests their implicit
wavelength dependence. Thus, the values will change when the filter is changed.

Thus, the sky subtracted signal (that of the star only) is

f(A)=2 [9(A)-9,(A)] (3.1)

pixels
Note that the sum is over all pixels where the star is present. We can obtain g,(1) by either
taking a separate exposure with no star present, but of equal time, or, as is more common, by
using pixels near to where the star is located to calculate the background level.
To analyze the problem in detail, we introduce the following notation: r. isthe inner
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aperture radius, r. is the outer aperture radius, lA is the inner aperture, and OA is the

0

outer aperture. We assume that r, and r, are measured from the centroided star position.

Star Center

Figure 3: Notation for aperture photometry. The inner circle is the inner aperture (1A) and
the outer circle is the outer aperture (OA).

Additionally, Table 10 gives some other notation that will be used.

Symbol Meaning

N Number of pixels in inner aperture
Noa Number of pixels in outer aperture
G(j,k) Pre-flat-fielded image array

R A/D counts per e~

N(j k) G(]j,k)/R, the pixel valuein e~

Table 10: More notation in aperture photometry.

With this notation, the sky-subtracted stellar flux n in electrons is then

_1 _1
n—Ep%s[g(ﬂ)—gb(i)]—Ef(ﬂ) (3.2)

In terms of the actual image arrays, we have

18



n=INGR- = SN (33)

Noa Oa
Where the sums are now over the pixels in the inner and outer apertures, respectively.

3.2 Error Analysis
We can compute the error in the sky-subtracted flux using some of our notation from
Section 2.2 to get

O,

5n:< >1/2 {2(5'\') J{N J 2(5'\‘) } (3.4)

where
N =g+ (4N | =) (35)

Here N is still the readout noise and now N is the total number of electrons produced in
a pixel, so SN is the uncertainty in a particular pixel’s measurement. Then (3.4) becomes

2 : NIA i 2 H "
5n:{Z(NR+N(J,k))+(N—OAJ Z(NR+N(j,k))] (3.6)

1A OA
This is really nothing different than what we developed in (2.11), but now it is expressed in the
detector frame rather than the telescope frame. Note that here, all values are still given in terms
of e counts so that we may use Poisson statistics.

3.3 Comparative Photometry
In order to be able to compare the magnitudes and intensities of stars, we need a
standard of measurement so that different measurements using various telescopes, CCDs, etc.

will yield the same results. For this, we need a standard measure of flux (i.e. photonscm™?s™
or ergscm2s™). In addition, we would like a standard set of stars to calibrate our instruments
on. Later we will look in detail at the question of measurements of flux. For now, it is sufficient
to assume the detector (CCD) and electronics are linear. Thus the relationship between the
intensity of a star we measure in A/D units as f (1) and the actual flux of the star F(1) in
photonscm™s™ m™ s just
f(1)=c(L)F(L) (3.7)
where c¢(1) is a “constant” that depends on the specifics of our telescope, filter, CCD, A/D,

etc. In general, this “constant” depends on the wavelength being measured for a variety of
reasons (filter response, CCD quantum efficiency, etc.).

The magnitude scale is defined so that the difference in magnitudes is related to the
log (base 10) of the ratio of fluxes as

m, — 2. 5Iog(]jj§2))j (3.8)

where m, m,, F(4) and F,(4,) refer to the magnitudes and fluxes of two stars. We
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have to be careful here, though, to specify the wavelength accepted by our instrument.
If we assume both measurements are done at a fixed wavelength A1, then one can

write this in terms of the measured intensity f (1), f,(1) as
m, —m, =-2.5log [Mj = —2.5Iog( fl(/l)] (3.9)
fo(41¢(2)) fo(4)
since c(A) is the same in both cases. Here the assumption of fixed wavelength was critical.
Here we have implicitly assumed that f (1) is the sky-subtracted signal in the language of the

previous section, so that the background, sky, dark current, etc., has been subtracted.
So far, we can only get magnitude differences. What we need are stars of known flux
and magnitude at given wavelengths. These are standard stars. If m, is the known magnitude

of astandard starand f,(4) isthe measured intensity in A/D units, then the magnitude m, of

another star whose intensity f,(1) is measured at the same wavelength is

m, =m,—2.5log (%} (3.10)
0

In this way, we calibrate the measured magnitudes.

3.4 Atmospheric Considerations
Our goal is to calculate the apparent magnitude of a star as it would appear above the
earth’s atmosphere and to take into account the band pass and efficiencies of the whole system
(filters, telescope, detector, atmosphere) so that we can compare our results to those measured
by others or so they can compare their results to ours. We will use the parameters defined in
Table 11.

Symbol Meaning

f(1) intensity measured (in general it will depend on wavelength)

f7 (1) intensity that would be measured outside the earth’s atmosphere

m(1) magnitude measured

m’ (1) magnitude that would be measured outside of the earth’s atmosphere;
typically what we are trying to solve for

a(4,0) opacity of atmosphere as a function of wavelength and zenith angle,
mathematically: In| f"(2)/ f(4)]

ay(4) opacity at zenith (looking straight up); essentially «(4,0)

Table 11: Parameters relevant to atmospheric corrections to photometry.

We define the extinction coefficient via
K(1) = 2.5log(e)e, (1) =1.086¢,(1) (3.11)
The reason for this rather odd-looking definition will become clear soon (essentially changing
from the natural base e systemof « tothe modified base 10 system of magnitudes). We can
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model the earth’s atmosphere as a horizontally stratified slab so that we can relate «(A4,6) and
a,(A) as follows:
%A ()seco (3.12)
cosé

where X (6) is called the air mass and for angles <60, is well approximated by
X () =sec(9) .

The air mass is the ratio of the atmosphere column density at the observation zenith
angle @ to the column density at € =0 (often referred to sea level for #=0). The termis
loosely used in the literature, unfortunately.

The relationship between the two magnitudes m(1) and m'(1), as well as the

a(,0)X () ~

corresponding fluxes (1) and (1) is as follows:

m’(4)-m(2) =-2.5log| f°(2)/ f(4) ] (3.13)

since log| f"(4/ f(2)]=log(e)In| f"(2)/ f(4) |= log(e)a(4,6) , we may write
m’ (A) = m(1) - 2.5log(e)a(1,0) (3.14)
=m(A1)—2.5log(e)e, (1) X (6) (3.15)
=m(2) - K(2) X (6) (3.16)
=m(4)— K(4)sec(8) (3.17)

whenever € <60°.
Hence once we measure m(4) wecanget m (1) if weknow orcan calculate K(A)
. The problem now becomes one of finding (measuring) K(A1).
Note that we have really only determined the difference m"(1)—m(A1), and unless we

use a calibration (known) star to set the “reference level”, then m(4) (and hence m’(A)) will
be uncalibrated.

In Table 12, we give the “air mass” and refraction of an object versus zenith angle @.
The “air mass” includes effects due to the earth’s curvature and is slightly different from sec(8)
fo angles greater than 60°. The refraction angle assumes observations at sea level. Objects are
always lower than they appear.

Now we define Z, to be the zenith angle (angle between the vertical and the star) as

it would be measured if there were no atmosphere present. Then, accordingly, Z will represent
the actual (measured) zenith angle of the star. Then at sea level, we have R representing
Z,—Z inarcseconds (Sorry, R is no longer the A/D gain per electron). This is essentially the

correction to the measured zenith angle to get the actual zenith angle. Roughly this is given by

R =58.3tanZ —0.067tan*Z (3.18)
@ (Degrees) Air Mass, X R (arc seconds)
0 1 0

21



10 1.02 10
20 1.06 21
30 1.15 34
40 1.30 49
50 1.55 70
60 2.00 101
70 2.90 159

Table 12:Sea level air mass and refraction versus zenith angle.

A plot of m(1) versus X (@) measured over time as a star rises or sets should be a
straight line if the atmosphere is stable over this time. Since m(1) =m" (1) +K(1)cos@, the
slope of the line would be K(A4) and the zero intercept would be m"(1), which is the extra
atmospheric magnitude we are trying to measure.

Note that, in theory, if we measure m(A) for the same star at two air masses, we can
hen determine m’(4) and K(1). Conversely, if we know m’(1) (from standard stars) we
can determine K(A). Note that we can measure K(A1), but as stated before, we really only
measure magnitude differences (i.e. m’(1)—m(A)) unless we calibrate our magnitude scale

using a standard star.

In Table 13, we list the extinction coefficient and transmission versus wavelength using
a “standard” sea level atmosphere assuming the zenith angle is zero (@ = 0). By definition, in this
case the airmassis X (0 =0) =1. The extinction coefficient unit of measure is “magnitudes”.

A (microns) K(A4) (mag) Transmission (%)
0.30 4.89 1.1
0.32 1.41 27.3
0.34 0.91 43.0
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0.36 0.74 51.0
0.38 0.60 58.0
0.40 0.50 63.0
0.45 0.34 73.0
0.50 0.25 79.0
0.55 0.21 82.0
0.60 0.19 84.0
0.65 0.14 88.0
0.70 0.10 91.1
0.80 0.07 93.9
0.90 0.05 95.3
1.00 0.04 96.2
1.20 0.03 97.2
1.40 0.02 97.9
1.60 0.02 98.3
1.80 0.02 98.5
2.00 0.01 98.7

Table 13: Extinction coefficient and transmission as a function of wavelength assuming zenith
viewing at sea level with a “standard” atmosphere.

3.41 Finding m'(1) and K(A)
If we measure the magnitude of a star for two different air masses, we can solve for
m'(A) and K(A) as follows. First, let m/(1) and X,(f,) be measured at angle 6, .
Similarly, m,(1) and X,(6,) are measured atangle 6,.Then as before, we have
m, (1) =m"(2) + K(2) X,(6,) (3.19)
m,(2) = m (1) + K(1)X,(6,) (3.20)
Then the extra-atmosphere magnitude and extinction coefficient can be be obtained as
m*(ﬂ.) — ml(ﬂ)xz(ez) —-m, (ﬂ) Xl(‘gl)
Xz(ez) - x1(91)
K(ﬂ,) = mz(ﬂ“) B ml(l)
Xz(ez)_ Xl(el)
The primary disadvantage to this method is that it assumes the atmosphere is stable over the
time it takes for the star to go from 6, to 6,. Usually it is desirable to have at least a 30°

(3.21)

(3.22)

difference between 6, and @, to give reasonable accuracy for m'(1) and K(A). Intheory,

the measured K(A) could now be used for other stars to find m'(1) as long as the

atmosphere is stable.
Another way of determining K(A4) is to measure two or more known stars of the

same spectral class at significantly different air masses using the same filter(s). Since in this case,
we know m’ (1) for each star, we have
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m, (1) = m; (1) + K (1) X,(4) (3.23)

m, (4) = my(4) + K (1) X, (6,) (3.24)

Since we specified the same filter is used for each observation, we get the extinction coefficient
to be

K(ﬂ,): mi(ﬂ)_mz(ﬁ)_(ml (ﬂv)_mz(/ﬁt)) (3'25)

X,(6)—X,(6,)
By using stars of the same spectral class, we minimize any mismatch problems our filters may
have. Also by writing K(4) as involving only the differences in magnitudes m, (1) —m,(A1)

eliminates the need to calibrate the measured magnitudes m,(4) and m,(1).

3.4.2 Finding the absolute flux of a star
To find the absolute flux of a star, we need to know the response of tall of the elements
of our system including telescope, filters, detector, sky background and atmospheric opacity. We
define these responsivities quantitatively as given in Table 14.

Symbol Meaning

f(1) measured star intensity in A/D units

F (1) actual [specific] star flux above atmosphere in photonscm?s™'m™

F(A) [specific] star flux at telescope aperture

e(A) optical efficiency, including telescope, filter, glass, etc. (fraction of|
photons entering telescope aperture that make it to detector)

QE(A) quantum efficiency of CCD in e~ /photons

A effective aperture area of telescope in cm?

Fs; (1) emitted sky background in photonscm s 'steradian"*m™

R CCD response (A/D counts per e)

R, A/D no signal value (offset)

a(l,0) atmospheric opacity. Depends on A and zenith angle of observation.
a(2,0)=In[ F" (1) F(4) ]

Ioc CCD dark currentin e /s

Toe integration time in seconds

Q1) solid angle per CCD pixel in steradians

A optical bandpass of system (filter) in m

Table 14: Variables of use in this section.

For convenience, we define the effective area of the telescope via
A (1) = As(1)QE(A4)A1 (3.26)
which is similar to our discussion in Section 2.2 (though note that it actually has units of volume
due to the presence of the bandwidth). Then the measured star intensity in A/D units is

F(4) = [[F(A) A2(2)QE(2) + Fy (1) Az(A)QE(L)Q(A)] d Adt (3.27)
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~ [F*(i)e‘““’g)Ag(/l)QE(ﬂ)A/i + R (1)Q(A) As(1)QE(A)AL + iDC]rR +R,
(3.28)

This is a bit ugly (and also a bit heuristic), so we’d like to rewrite it in terms of measured
quantities. Defining f; (/1)E[FB()L)Q(Z)Ag(/i)A/IJriDC]Rr+ R, (essentially a noise flux), we
may rewrite (3.28) as

f(1)=F (W)e“*?A (A)rR+ f5 (1) (3.29)

The first term is the signal from the source, whereas the rest is due to different noise sources.

Solving for the intrinsic flux, we have

g*(*0) [f(2)- fs(2)]
A (A)r
Notice that f; (A1) is precisely the value that the same pixel would have if there were no star

F'(4)= (3.30)

present (i.e., if we were only measuring the background and dark current). We can easily get
fz (1) by making another measurement of the same integration time of a blank field (same
zenith angle approximately or by using a nearby pixel value which should be equivalent (assuming
flat fielding was done first).

Notice that A (4) is only a function of system parameters and does not depend on

the atmosphere. In theory, we need only determine A _(1) once for each filter used and it

should be consistent thereafter. This assumes that the CCD is stable from one observation to the
next.
Since a star will usually deposit photons in more than one pixel we should sum over all

pixels that have significant star light. We then write F’(1) as

. B ea(ﬂ,,e)
F'(1) —WZ“(A)— fo ()] (3.31)

In Section 3.1, we calculated the total number of electrons n produced in the CCD associated

with the star as
1

n= EZ[ f(2)-f5(A)] (3.32)

So we may rewrite (3.31) as
Fy= 3.33
()_Ag(l)fn (3.33)

3.5 Filters
Note: A lot of this material is adapted from Carroll & Ostlie’s An Introduction to Modern
Astrophysics, 2nd Edition.
3.5.1 Bolometric Magnitude
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In measuring photometry, we are often trying to measure the amount of electromagnetic
flux incident on a detector. However, there is no detector that is completely sensitive in all
wavelengths (such a detector would be called a perfect bolometer). In fact, no detectors exist
that can measure flux even poorly in all wavelengths. Instead, they are all limited to some
(typically small) subset of the EM spectrum. So far, though, when we’ve talked about magnitudes,
we’ve typically only been talking about bolometric magnitudes (unless the magnitude was
denoted as m(1) , where wavelength dependence was made explicit). The bolometric
magnitude is what would be measured by a perfect bolometer if there were no losses due to
guantum inefficiencies, atmospheric extinction, interstellar reddening, etc. In terms of the
specific flux, F, (sometimes called the spectral energy distribution, or SED) of an object and

your magnitude system’s zero point, the bolometric magnitude is defined as
My = ~25l0g,,( [d AF, )+ g (3.34)

We keep the integral over all wavelengths of the specific flux in there as a pedantic gesture to
illustrate the difference between the bolometric magnitude from the other magnitudes we will

be discussing. Note, though that _[dﬂ’Fﬂ. is simply the overall flux F of the object. We may

define other fluxes, like the visible flux via
A
I:Visible = J‘ﬂlzdﬁ“Fl (335)

where 4 and A, are chosen as the limits of the visible spectrum (say 350 nm and 750 nm,

or thereabouts).

Since we have no hope of directly measuring the bolometric magnitude of an object
(even if we go to space, etc.), we sidestep the problem by making sets of filters that only allow
certain bands (intervals) of wavelengths through, and at well-known efficiencies. In addition to
knowing just what’s able to be measured by our detector, we also get an idea of what the “color”
of an object is.

3.5.2 The Johnson-Morgan Filter System
The classic system of filters that we will discuss is the Johnson-Morgan (sometimes the
name Cousins is thrown in here, too) of filters. While there are a great many filters in this system,
we will look at the main three, U, B, and V . Some basic information about these filters is
shown in Table 15.
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Symbol “Color” Central
Wavelength FWHM
U Ultraviolet 365 nm
68 nm
B Blue 445 nm
98 nm
\% Visual 550 nm
89 nm

the Johnson-Morgan system.

Table 15:
Basic filters of

With each filter, we can determine a magnitude in that filter. For instance, we are able
to determine the B -band magnitude by measuring the magnitude of an object witha B filter
on the telescope. Each filter will let in different fluxes for a given object, so a zero-point
magnitude must be determined for each filter. For instance, we may define a guide star to be at
magnitude zero in all bands, so its flux sets the zero point for the magnitude in a given band. The
filters are shown in Figure 4

responses forthe U, B, V, R,and |

3000 4000 5000

6000
Wavelength

8000

9000

Figure 4: Sensitivity functions of the Johnson filters (black lines). From left to right, they are

U, B,

V, R,and I.
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In addition to the Johnson system of filters, different observatories and astronomers
use different systems to suit their needs. A popular system nowadays is the SDSS ugriz system.
Sometimesyou’llsee u’, g’, r', i',and Z' tolabel these filters as well. The primes do mean
something, as these system are different in nature. These filters were named after the project
where they were first thoroughly used, the Sloan Digital Sky Survey (SDSS). Their responses are

shown in Figure 5.

100

90

YT

/A8 G BN A

300 400 500 600 700 800 800 1000 1100

Wavelength, nm
Figure 5: Sensitivity functions of the SDSS u'gr'i'’z" filters.

3.5.3 Color Indices and Corrections
When multiple exposures of an object are taken in different filters, we gain a wealth of
information. Not only do we obtain the magnitudes in multiple bands, but the differences in the
various magnitudes tell us about the relative color of the object. We define the color index of an
object in two filters by the difference in magnitude of that object as measured in the two filters.
For instance, the B—V color index of an object is given by

B-V=M;-M, =m; —m, (3.36)
Note that we have denoted the absolute and apparent magnitudes with subscripts indicating
which filter they correspond to. Sometimes in the literature, we see just U to represent the
U -band magnitude (apparent). We shall avoid such notation here, but it is quite common to see

the apparent magnitude in a filter to just be represented by the filter symbol.
Another thing to note is that to get a color, we don’t need absolute magnitudes. This is
where the niceties of the logarithmic magnitude system become apparent. We need only look at
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the differences of magnitudes to find the color. No distances need to be known (assuming any
interstellar reddening or redshift is negligible or at least accountable). Quite often knowing the
color of a star is just as important if not more so than knowing the actual brightness. For a
blackbody, for instance, the color is directly related to the temperature of the object. As such,
quite often HR diagrams (typically a plot of the luminosity against its effective temperature) will
be represented with a color on the x-axis and an absolute magnitude (or at least a distance-
normalized magnitude) on the Y -axis. This is more the “observer” picture of an HR diagram,

whereas the more traditional L—T, diagram is more of a “theorist” view. This is because we

measure filter magnitudes (and thus colors) directly, and we infer luminosities and temperatures.
Despite its impossibility of being directly measured, we still would like to determine an
object’s bolometric magnitude. For objects with known spectra ( F, ), often we have a bolometric

correction available. The bolometric correction of an object is the quantity that needs to be
added to the visual (V -band) magnitude to get what the bolometric magnitude would be. Recall
that if we have the spectrum, we can deduce what the bolometric magnitude would be (if we
already know the distance and size). We’ll figure out how to use this information in just a
moment. Mathematically, the bolometric correction is
BC=m,-m, =M, —M, (3.37)
Astronomers have large tables that give pre-calculated bolometric corrections for stars of
various spectral classes. In general, though, finding the bolometric correction is not an obvious
task.

Example: Color Indices and Bolometric Corrections
Sirius, the brightest-appearing star in the sky, has U, B, and V magnitudes of
m, =-147, my; =-1.43,and m, =-1.44. Thus for Sirius,

U-B=-147-(-1.43)=-0.04 (3.38)
and
B-V =-1.43-(-1.44)=0.01 (3.39)
The bolometric correction for Sirius is BC =—-0.09, so its apparent bolometric magnitude is
m,, =m, + BC = -1.44+(-0.09) = -1.53 (3.40)

To perform such a calculations, and many like them, we must first talk about sensitivity
functions. Sometimes these are called the response function, the transmission function, or any
number of things. The idea, though, is that the sensitivity function of a filter determines what
fraction of photons of a given wavelength pass through the filter to a detector. We already saw
these in Figures 4 and 5. It’s important to notice that these are very dependent on wavelength,
especially at the fringes of sensitivity. We will denote the sensitivity of the ith filter (no filter in
particular) as S(4). S,(1) is always between 0 and 1. When S(1) =0, the the filter is

opaque to that wavelength, and if &, (4) =1, then the filter is transparent to that wavelength.

For the purposes of this discussion we will be neglecting attenuation due to interstellar
reddening, the atmosphere, and intrinsic inefficiencies in the telescope/CCD.

With this machinery, we may determine what the flux through any given filter could
be, in a fashion similar to (3.35). Through a given filter i, the flux through that filter from an
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object with specific flux F, would be
F =fd/15i (A)F, (3.41)
Note how the flux is attenuated by the sensitivity function, and so outside of the region of
sensitivity of the filter, F, is chopped to zero by S,(1). We might think that the sensitivity

function of a perfect bolometer would be S =1, so that there is 100% transmission at all

perfect
wavelengths. Correspondingly, the magnitude that would be measured in that filter would be

m, =-2.5log K +m,, (3.42)

where, again, m;, isthe zero pointin that filter. Now we can use this sort of thinking to come

up with a more rigorous definition for color indices. For instance, the “formula” for U —B of an
object would be

[das, (WF,
[das, (A)F,

where C, ; is simply the difference in the two zero points, C;, —C;. So we see now that if

U-B=-25log Cus (3.43)

we know F, and the magnitude in any filter, we know it in all of them. However, we typically
don’t know F, to good enough precision to be happy with just one filter (and often we don’t

know it at all, since spectroscopy is harder than photometry), so we typically have good filter
coverage to minimize the errors.

We now can return back to how we calculate bolometric corrections, which is now a
trivial exercise. A bolometric correction is nothing more than a color index with one filter being
that of a perfect bolometer (S(1) =1):

[daF,
Slog| — |+
fdas, (4)

As a cultural aside, C,, was not chosen in the same way that the other C,’s were (at least,

My —M, =2 Coav =BC (3.44)

not originally). Astronomers wanted the bolometric correction to always be negative (with the
reasoning that integrating over all wavelengths should “be brighter” than only a subset).
Eventually a value was chosen for C, , but afterwards supergiants were discovered that have
positive bolometric corrections. However, the damage was done, and now the system is well in
place.

3.5.4 Photometric Redshift

We can squeeze another use out of the various colors that filters provide us. In the case
of a known spectral energy distribution (SED, same as specific flux, F,), we can, in theory,
calculate what the expected color indices would be. However, for redshifted objects (typically
extragalactic objects), the SED will be altered via 1 — (1+z)A. As a result, the measured color
indices will be different.

We can use this effect to estimate redshifts (and thus via Hubble’s law, distances) to
objects. One could simply dial zZ up from 0 until the difference between the new, redshifted
color indices and the observed color indices reaches a minimum. This technique is called a
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photometric redshift. We call it that in contrast to spectroscopic redshifts, where are obtained
by seeing how far known absorption or emission features are moved in a spectrum.

Photometric redshifts are sort of a “poor man’s redshift” because they are often quite
imprecise, with uncertainties of up to 6z =0.5 not uncommon. Interstellar reddening, both
from the host as well as the Milky Way also act to muddle this process up, but it is still a good
first-order guess to get a distance to an object when ample telescope time to “do it right” with a
spectrometer is not available.

3.5.5 Interstellar Reddening and Color Excess

Being so distant, objects are often reddened by interstellar reddening, which we’ve
already mentioned, but not defined. Dust in between stars acts to scatter photons, but it prefers
short-wavelength photons. This is the exact same reason why sunsets are red and the sky is blue:
the blue photons from someone else’s sunset are scattered into our sky, leaving their sunset red.
The same thing happens to stellar objects whose light have a long way to travel (even in our own
galaxy).

We define the total extinction in a filter as the change in magnitude (in that filter) that
is caused by interstellar reddening. Typically itis denoted by A(i) forthe ithfilter. In equation
form, we have

m..=m + A(i) (3.45)

Not only will this extinction cause a decreased incident flux here at Earth, but since it’s
reddening, it will cause different extinctions in different filters. Since different extinctions cause
different changes in magnitudes, the color indices of an object are affected by interstellar
reddening. See Figure 6 to see how some local galaxies cause extinction of light in various

wavelengths.

i,0bs i,intrinsic

Figure 6: Extinction curves for the Milky Way and the Magellanic Clouds. Note that they are
wavelength dependent, and they even vary depending on where you are observing through.

This differential extinction gives rise to the definition of a color excess. For
convenience, we'll define it in terms of the B and V filters, but the same idea applies to any
color index:

E(B _V) = (B _V)observed - (B _V)intrinsic = A(B) - A(V) (3.46)

The color excess of an object is really more of a property of the medium between the observer
and the source more so than the source itself, so we can act to mitigate its effects. For instance,
when viewing distant supernovae, we may know something about its host galaxy (how dusty it
is, etc.), so we can estimate a value for E(B-V), - Additionally, if we know what part of the

Milky Way we’re looking through, we can also probably come up with some value E(B-V),,,

with which to correct the incoming light.

However, for very distant objects, their redshift can complicate this process. For
instance, the light that wasinthe B and V bands when it was emitted was reddened by the
host galaxy dust just as we would expect. However, along the way, the photons are redshifted as
they reach the Milky Way. Now the E(B-V),,, isactingon light that was emitted at a shorter
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wavelength than it is now (and the B and V -band photons that were reddened by their host
are now entering the Milky Way at longer wavelengths). The light that is now entering the Milky
Way probably started its journey at a shorter wavelength, and was reddened by its host galaxy,
but not in the same way as the B and V light was since the extinction acts differently at
different wavelengths and at different places. You can see how this quickly gets convoluted.
3.5.6 K-Corrections

Not only is the business of keeping track of color excess from distant sources difficult,
but the entire photometric system is now totally bonkers. The magnitudes you are measuring in
each filter are no longer representative of the actual color of the object (as we’ve already
mentioned regarding photometric redshifts). While observing in the bands is completely fine, we
can’t say much about the actual source we are investigating because the magnitudes we record
are nearly meaningless. This is because the A’sin S(1) and F, are nolongerthe same.

In the SED, F,, the wavelengths described are those emitted by the source. However,
S(1) doesn’t “know” about that. Instead, it just deals with the wavelengths it receives. For
nearby objects, where the wavelengths of photons don’t change along the path from the source

to the observer, this isn’t a problem, but for substantially redshifted objects, this poses a huge
problem in getting accurate photometry. See Figure 7 for an example of how nasty this can get.

Figure 7: “Blueshifted” sensitivity functions of the R band at different redshifts. The solid
lines show the standard rest frame sensitivity functions of the B, V,and R filters. The
dotted line is showing the sensitivity as a function of the source’s rest frame wavelengths at
z=0.2, and the dashed line is the same for z=0.5. In those cases, the filter is pulling in
photons that are closerto V -and B -band filters, respectively. From Kim et al. 1996.

Astronomers have developed a way to fix this, though. The K -Correction is the
difference between the source’s rest-frame photometry and the observer’s rest-frame
photometry. Mathematically, we have

mj,observed = mi,rest + Kij (347)

Here, K isthe K-correction that converts observed magnitudes in the rest-frame i-band

and converts them to their corresponding magnitudes in the observer’s frame | -band.
Mathematically, though, this is a bit more complicated of a correction than our previous color
indices and bolometric corrections. We must account for the difference in zero points of the two
filters, as well as the redshifted SED, and finally, the reduced intensity of redshifted light. The
formula can be expressed in two ways. First, we’ll investigate the more straightforward one:

J'd AZ(2)S,(A) IdxlF(/l)Si (1)

K. =-25lo +2.5log(1+2)+2.5lo0 3.48

' : fdazs;(2) Tﬁu ) [daF (a1 (1+2)s,(2) 348)
ZeroPointCorrection WavelengthCorrection

Here we’ve labeled the three terms by what their responsibilities are. If z — 0, this becomes

a simple color index, with the first term simply being the difference in zero points. If i= j, then

the whole correction vanishes, as it just maps an unredshifted magnitude in a band to the exact
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same unredshifted band.
An alternate way to look at this is to combine the last two terms into one:

K, =_25l0g Jorzs@) [ diF@ws @)
jdzzu)sj(/l) Idxl’F(A')Sj(l’(1+z))

Here we’ve just combined the redshift logarithm term with the last term, then done a change
of variables on the bottom integralfrom A4 to A'=A/(1+2).This has a physical interpretation

(3.49)

as well. The first term still just corrects for zero points between filters, but the second term now
is the correction for the unredshifted source photons passing through a blueshifted filter. In this
case, the SED is the same in both situations (emission and collection), but the filter is now
sensitive to much smaller wavelengths. This is essentially the idea presented in Figure 7. The
various re-plottings of the R -band are at new “blueshifts”.

The first presentation does a good job of showing the physics of what’s happening to
the photons as they make their journey, but the second presentation shows more what you’re
getting with the observed filter. Regardless, they both give the same result (obviously), and no
one ever really uses these integrals by hand, since the sensitivity functions are never analytic.

With a good K -correction, we can convert observed measurements in any filter to
rest-frame measurements in any filter. However, to minimize error (due to not knowing F,

precisely), we should match the blueshifted observing filter to the closest available rest filter (or
alternatively, match the redshifted rest filter to the closest observed filter). In this way, the
impact of the last term is kept to a minimum, putting most of the work on the zero point
correction, which is presumably well-known. This is most easily seen in (3.49). We are looking for
thefilters i and j where S;(1)=S;(A(1+2)) so thatthe term can simply drop out.
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